
CHARACTERIZING AND IMPROVING ROBOT LEARNING:

A CONTROL-THEORETIC PERSPECTIVE

by

James Alan Preiss

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

August 2022

Copyright 2022 James Alan Preiss

Acknowledgments

My path to this dissertation has not been direct. I wish to thank the many people whose support,

encouragement, teaching, and inspiration have brought me here.

I am grateful for the opportunity to work with my advisor, Gaurav S. Sukhatme. His guidance has

been thoughtful and kind. His interdisciplinary approach to robotics gave me freedom to explore different

topics, knowing that he would help isolate the essence of a problem and see how it fits into the big picture.

Gaurav often says that the output of a Ph.D. is not the research; it is the researcher. This lesson helped me

appreciate the growth and learning from each project, no matter the results.

Many thanks to the USC academic community. I appreciate the insightful questions and suggestions

from the members of my qualifying, thesis proposal, and defense committees: Nora Ayanian, Heather

Culbertson, Ashutosh Nayyar, and Stefanos Nikolaidis. Nora was also a close collaborator on research

projects that do not appear in this dissertation. Shaddin Dughmi and Haipeng Luo taught courses that

shaped my research interests. Lizsl De Leon was a boundless source of cheer and wisdom in navigating the

Department, School, and University. My studies were generously supported by the USC Viterbi-Graduate

School Ph.D. Fellowship.

I was fortunate to collaborate with many fellow researchers: Sébastien M.R. Arnold, Jiajun Bi, Matt

Buckley, Tao Chen, Zhenghao Dai, Nicole Fronda, Karol Hausman, Wolfgang Hönig, Marius Kloft,

Alexander S. Koumis, T.K. Satish Kumar, Amlesh Sivanantham, Michael Leahy, David Millard, Artem

Molchanov, Ragesh K. Ramachandran, ChristianWagner, Chen-YuWei, StephanWeiss, Tao Yao, and Lifeng

ii

Zhou. It was a privilege to learn from people with such diverse backgrounds and interests. I especially

thank Karol and Wolfgang for setting an example during the first few papers, Ragesh for introducing

me to many new mathematical ideas, Séb, Marius, and Chen-Yu for influencing me ask more theoretical

questions, and David and Tao for bringing me into the world of deformable manipulation. To the labmates

with whom I did not collaborate directly: Thank you for camaraderie and interesting conversations.

Thanks to Hanna Mazzawi and Eugen Hotaj for hosting my internship at Google Research NYC and

broadening my perspective with a new problem. Frommy time in industry before graduate school, I thank

my supervisors Thomas Jansen and Xan Gregg. Their mentorship in software development practice made

the implementation side of my work much less intimidating.

From The Evergreen State College, I am grateful to Clyde Barlow, Dawn Rorvik, and Richard Weiss

for giving me a wonderful first academic research experience. We worked with numerical algorithms

and hardware, as I still do today. Thanks also to David McAvity and Brian Walter for teaching engaging

mathematics courses.

My parents Tony and Leah Preiss have always given me unconditional love and encouragement. My

brother Sandy is the best friend I could ask for. I thank them for everything. My grandfather Richard

Palmer and uncle Dev Palmer were role models in technical fields since childhood. I am lucky to have an

extended family filled with nice and interesting people.

I cannot imagine doing this without my partner Alana. She has given emotional support, shared her

knowledge of computer science theory, and brightened many days. She reminds me to celebrate good

things and take care of myself.

Finally, I dedicate this dissertation to my grandfather Jack Preiss, who pushed me to apply to graduate

school when I needed to be pushed.

iii

Table of Contents

Acknowledgments ii

List of Tables viii

List of Figures ix

Abstract xii

Chapter 1: Introduction 1
1.1 Structure of dissertation . 6

Chapter 2: Foundation: Mathematics and Themes 8
2.1 Notation . 8
2.2 Fundamentals . 11

2.2.1 Metrics . 11
2.2.2 Lipschitz and smooth functions . 11
2.2.3 Orthogonal and Euclidean groups . 12

2.3 Optimization . 13
2.4 Convexity . 14

2.4.1 Convex functions . 15
2.4.1.1 Subdifferentials . 16
2.4.1.2 Convex optimization problems . 16

2.4.2 Strong convexity . 17
2.4.3 Quasiconvex functions . 17
2.4.4 Convex optimization algorithms . 18

2.5 Markov decision processes . 20
2.5.1 Partially observable Markov decision processes . 22
2.5.2 Trajectories . 23
2.5.3 Infinite-horizon MDPs . 24

2.5.3.1 Bellman equations and operators . 25
2.5.4 Finite-horizon objective . 26

2.6 Families of MDPs . 28
2.6.1 Dynamics variations . 28
2.6.2 Reward variations . 29

2.7 Reinforcement learning . 30
2.7.1 On and off-policy algorithms . 31
2.7.2 Policy gradient methods . 32

iv

2.7.2.1 Log-derivative trick . 32
2.7.2.2 Policy gradient algorithm . 34

2.8 Control theory paradigms . 36
2.8.1 System identification . 36

2.8.1.1 Persistence of excitation . 37
2.8.2 Control with known model . 37
2.8.3 Robust control . 38
2.8.4 Gain scheduling . 38
2.8.5 Adaptive control . 39
2.8.6 Model-predictive control . 39

2.8.6.1 Receding horizon . 40
2.8.6.2 Linear MPC . 41

2.9 Linear dynamical systems and control . 41
2.9.1 Discrete time . 42

2.9.1.1 Autonomous system . 42
2.9.1.2 Stability . 42
2.9.1.3 Linear control systems . 43
2.9.1.4 Controllability . 43
2.9.1.5 Stabilizing controllers . 45
2.9.1.6 Linear quadratic regulator (LQR) . 45
2.9.1.7 Outputs and State Estimation . 46
2.9.1.8 Observability . 47
2.9.1.9 Luenberger observer . 48
2.9.1.10 Kalman filter . 48

2.9.2 Continuous time . 50
2.9.2.1 Autonomous system . 50
2.9.2.2 Stability . 51
2.9.2.3 Linear control systems . 51
2.9.2.4 Controllability . 52
2.9.2.5 Linear-quadratic regulator . 52

2.9.3 Canonical forms . 53
2.9.4 Pole placement . 54

2.10 Statistical learning . 54
2.10.1 General statistical learning problem . 54
2.10.2 Supervised learning . 55
2.10.3 Gradient-based optimization . 56

2.11 Neural networks . 57
2.11.1 Neural network architectures . 58

2.11.1.1 Nonlinearities . 58
2.11.2 Fully connected neural network . 59
2.11.3 1D convolutional neural network . 60
2.11.4 Recurrent neural network . 61

2.11.4.1 Long short-term memory . 62

v

Chapter 3: Reinforcement Learning for Universal Policies 63
3.1 Related work . 64
3.2 Problem statement . 66
3.3 Method . 66

3.3.1 Learning algorithms . 68
3.3.2 Implementation details . 70

3.4 Experiments . 72
3.4.1 Point-Mass Environment . 72
3.4.2 Half-Cheetah environment . 75

3.5 Discussion . 77
3.6 Simplified experiment: Universal policy versus experts . 78

Chapter 4: Deformable Manipulation using Learned Models 82
4.1 Introduction and Related Work . 83
4.2 Problem Setting and Preliminaries . 85
4.3 Methods . 88

4.3.1 Data collection . 89
4.3.2 RNN dynamics model . 89
4.3.3 Model-predictive control with reduced-order model 90
4.3.4 Estimating the RNN state . 92
4.3.5 Implementation . 94

4.4 Experiments . 95
4.4.1 Model frequency response . 95
4.4.2 MPC tracking . 96

4.5 Conclusion . 100

Chapter 5: Variance of Policy Gradient for LQR problems 102
5.1 Introduction . 102
5.2 Related work . 104
5.3 Problem setting . 107
5.4 Main result: Variance bounds on the REINFORCE estimator 108
5.5 Experiments . 110

5.5.1 RL policy optimality for varying Σu . 114
5.6 Proof of Theorem 5.4.1 . 116

5.6.1 Bounding ∥xt∥ . 118
5.6.2 Bounding Term1 . 119
5.6.3 Bounding Term2 . 121
5.6.4 Combining bounds . 121

5.7 Proof of Theorem 5.4.2 . 123
5.7.1 Lower bounding E

[(∑H
t=1 δ

u
t xt

)2]
. 124

5.7.2 Lower bounding E
[(∑H

t=1 rt

)2]
. 125

5.7.3 . 125
5.7.4 Combining . 126

5.8 Discussion . 127

vi

Chapter 6: Suboptimal Coverings 128
6.1 Introduction . 128
6.2 Problem setting . 130
6.3 Related work . 134
6.4 Theoretical results . 136

6.4.1 Scalar upper bound . 138
6.4.2 Scalar lower bound . 140

6.5 Empirical results . 142
6.5.1 Geometric grid construction for upper bounds . 142

6.5.1.1 Empirical upper bound on N cov
α (Φ). 143

6.5.1.2 Efficiency of geometric grid partition. 144
6.5.1.3 Efficiency of GCC synthesis. 144

6.5.2 Suboptimal neighborhood visualizations . 145
6.6 Proof of Lemma 6.4.8 . 147
6.7 Efforts towards matrix case . 153

6.7.1 Easy case: Scalar multiples of B . 153
6.7.2 Role of α’s lower bound . 156
6.7.3 Form of Riccati perturbation for geometric grid recursion 158

6.7.3.1 Multiplicative change in P . 159
6.7.3.2 Additive change in P . 160

6.7.4 How we would use bounds on cost change due to B perturbations 162
6.7.5 Existing Riccati solution and perturbation bounds 163
6.7.6 Lower bound candidates . 164

6.7.6.1 Lower bound for A = I . 164
6.7.6.2 Lower bound for A = 1

n1 . 166
6.7.7 Packing-based strategies for lower bounds . 166
6.7.8 Reparameterization . 168
6.7.9 Suboptimal neighborhoods for variations in A . 171

6.7.9.1 Cart-pole system . 172
6.7.9.2 Two real eigenvalues . 173
6.7.9.3 Pair of conjugate eigenvalues . 174
6.7.9.4 Spring-mass-damper . 175
6.7.9.5 Discussion . 176

6.8 Conclusion and future work . 177

Chapter 7: Conclusions 179
7.1 Summary of contributions . 179
7.2 Future work . 181

Bibliography 183

vii

List of Tables

4.1 Values of user-chosen constants in deformable manipulation experiments. 94

4.2 MPC tracking errors for our deformable manipulation method. 99

viii

List of Figures

1.1 Illustration of an early electromechanical autopilot. 5

2.1 The function −e−x2 is quasiconvex but not convex. 17

2.2 Typical nonlinearities used in neural networks. 59

3.1 Diagram of method for adaptive universal policies using a system identification embedding. 67

3.2 Learned system identification embedding for point-mass system. 73

3.3 Actual vs. estimated gain and embedding values for point-mass system. 73

3.4 Visualization of “non-dimensionalizing” learned embedding for point-mass system with
redundant parameters. 74

3.5 Variations of Half-Cheetah environment produced by randomization of kinematic and
dynamic properties. 75

3.6 Training and test rewards for our method and baselines. 76

3.7 Learning curves for multi-system “universal policy” and single-system “expert” policies
for nine random linearized planar quadrotor systems. 81

4.1 Real-robot test setup for deformable manipulation. 86

4.2 Architectural diagram of our method for deformable manipulation, illustrating role of
RNN model, EKF, and MPC. 87

4.3 Schematic diagram of pool noodle experimental setup. 95

4.4 Frequency-domain gain and phase response (Bode plots) for real pool noodle and LSTM
model. 97

4.5 Two-dimensional projections of paths traced by pool noodle free end in MPC tracking
experiments. 97

ix

4.6 Traces of rotation angle inputs and horizontal and vertical components of pool noodle
free end for MPC tracking of circle trajectory. 98

5.1 Comparison between our upper bounds and the empirically measured variance of
REINFORCE as they relate to matrix parameters of the LQR problem. 111

5.2 Comparison between our upper bounds and the empirically measured variance of
REINFORCE as they relate to state dimensionality and time horizon of the LQR problem. . 113

5.3 Learning curves of REINFORCE for a random LQR problem with varying scales of action
noise and environment noise. 114

5.4 Suboptimality ratios of the policy after 1000 iterations of REINFORCE for a random LQR
problem with varying scales of action noise and environment noise. 115

6.1 Diagram of quadrotor helicopter translation and attitude states. 133

6.2 Illustration of geometric grid partition (Definition 6.5.1). 142

6.3 Empirical upper bound on grid pitch k needed to construct geometric grid covering of
linearized quadrotor using GCC synthesis. 143

6.4 Suboptimality ratios for corner cells in geometric grid covering of linearized quadrotor. . 144

6.5 α-suboptimal neighborhoods for geometric grid partition in 2D systems with minimum
coupling (A = I) and maximum coupling (A = 1

n1) dynamics. 145

6.6 Topological phases of α-suboptimal neighborhood for one controller in 3D system with
minimum coupling (A = I). 146

6.7 “Approximation error” accounted for by α > 2a+1
2a assumption in scalar upper bound proof. 157

6.8 Looseness introduced by the inequality (6.12) for random LQR problems. 157

6.9 Comparison of actual cost and lower bound based on the strong convexity constant
derived by Mohammadi et al. (2019) for scalar LQR problem. 171

6.10 Cart-pole system. 172

6.11 α-suboptimal neighborhoods for cart-pole system. 172

6.12 α-suboptimal neighborhoods for system in controllable canonical form (CCF) with A
having two positive real eigenvalues. 173

6.13 α-suboptimal neighborhoods for system in controllable canonical form (CCF) with A
having two complex conjugate eigenvalues. 174

6.14 Spring-mass-damper system. There is no gravity. 175

x

6.15 α-suboptimal neighborhoods for spring-mass-damper system with variations in stiffness
and damping constants. 176

6.16 Example of a poor match between a grid partition ofΦ and true suboptimal neighborhoods
of LQR-optimal controllers for Φ in the cart-pole system. 177

xi

Abstract

The interface between machine learning and control has enabled robots to move outside the laboratory

into challenging real-world settings. Deep reinforcement learning can scale empirically to very complex

systems, but we do not yet understand precisely when and why it succeeds. Control theory focuses on

simpler systems, but delivers interpretability, mathematical understanding, and guarantees. We present

projects that combine these strengths.

In empirical work, we propose a framework for tasks with complex dynamics but known reward

functions. We restrict the use of learning to the dynamics modeling stage, and act based on this model

using traditional state-space control. We apply this framework to robotic manipulation of deformable

objects.

In theoretical work, we deploy the well-understood linear quadratic regulator (LQR) problem as a test

case to "look inside" algorithms and problem structure. First, we investigate how reinforcement learning

algorithms depend on properties of the dynamical system by bounding the variance of the REINFORCE

policy gradient estimator as a function of the LQR system matrices. Second, we introduce the framework

of suboptimal covering numbers to quantify how much a good multi-system policy must change with

respect to the dynamics parameters, and bound the covering number for a simple class of LQR systems.

xii

Chapter 1

Introduction

A machine learning system makes decisions based on a data set of observations and improves its perfor-

mance as the amount of data grows. Machine learning is useful for interacting with systems that are too

complicated to model based on first principles. Within the field of robotics, two especially important ap-

plications are vision input and complex dynamics. This dissertation focuses on the latter. Some examples

of complex dynamics are:

• The contact friction between a foot and the surface upon which it walks.

• A deformable object bending under the influence of boundary conditions.

• The aerodynamics of a helicopter when it is close to the ground.

The dynamics of these phenomena obey the laws of physics, but that does not mean they are easy to

predict:

• The distribution of pressure and friction across the foot changes throughout the stride. Each walking

surface adds its own complexity, for example sand or ice.

• The deformable object is governed by continuummechanics, so its true state is infinite-dimensional.

• The helicopter’s airflow can be well-approximated in static hover, but is harder to predict when the

helicopter is accelerating.

1

Even when an accurate physics-based model is available, using it in a robot’s control loop may be compu-

tationally infeasible.

Control theory provides (usually) mathematically principled techniques for realizing a desired behavior

of a dynamical system via inputs. However, those techniques often depend on assumptions that are not

satisfied by complex systems, such as linearity, smoothness, convexity, simple probability distributions,

and so on. Often the techniques struggle with high-dimensional systems. Control theory has developed

its own learning methods within the subfields of system identification and adaptive control.

Reinforcement learning (RL) is the branch of machine learning that deals with acting optimally in an

unknown dynamical system. Early RL research was mainly confined to finite state and action spaces in

discrete time, whereas control theorists focused on continuous spaces in both discrete and continuous time.

On the other hand, RL researchers have always been interested in “intelligent” behavior involving long-

term planning, whereas control theory has focused on simpler behaviors like stabilizing at an equilibrium

or tracking a reference trajectory. A key goal of RL theory, and of machine learning theory in general,

is understanding the sample complexity of learning problems: how much data is required to guarantee

that a certain performance metric is satisfied? Sample complexity upper bounds are most often derived by

proposing an algorithm, while lower bounds are most often derived by carefully constructing worst-case

problem instances. Sample complexity analysis is closely related in spirit to computational complexity

analysis in computer science.

In the past few years, the theoretical sides of each community have increased their overlap. Especially

notable has been the drive for learning-theory-style sample complexity guarantees in control-theory-style

dynamical systems, especially linear systems, wheremany previous results only provided asymptotic guar-

antees. Mania et al. (2019), Simchowitz and Foster (2020), and others obtained finer-grained characteriza-

tions of existing methods in control theory by applying the sample complexity perspective. Conversely,

researchers have also used those classic settings as mathematically tractable test cases to gain insight into

2

existing reinforcement learning algorithms (Fazel et al., 2018; Mohammadi et al., 2019). New lines of in-

quiry into these systems has also provoked new questions more fundamental than sample complexity (Bu

et al., 2019b). A more extensive review of RL theory for continuous systems is given in §5.2.

Empirical successes The overlap of the empirical sides of learning and control have produced spectac-

ular results in recent years. The success of deep neural networks for nonlinear function approximation

with high-dimensional data, such as in image classification (Krizhevsky et al., 2012), motivated researchers

to experiment with applying them to control tasks. In a landmark result, Mnih et al. (2013) showed that

a single reinforcement learning algorithm and deep neural network architecture could reach human-level

performance on many different games from the Atari 2600 console. This combination is known as deep

reinforcement learning (deep RL). Their method used the Q-learning principle, meaning it could only be

applied to settings where computing the maximum in the Bellman optimality operator (2.9) is feasible.

Practically, this meant environments with finite (and not combinatorially large) action spaces.

Subsequently, a flurry of deep RL algorithms were proposed targeting similar results for continuous

action spaces. The OpenAI Gym (Brockman et al., 2016), especially the locomotion-related environments,

emerged as a benchmark. Among these algorithms, those of Schulman et al. (2017) and Haarnoja et al.

(2018) were especially successful and became widely used for RL in continuous spaces. However, most of

these results were confined to simulation due to high sample complexity, safety issues, or both.

For real physical systems, model-based RL is usually preferred for its sample efficiency. Deisenroth

and Rasmussen (2011) used Gaussian process regression to handle model uncertainty in a principled way,

but the method is computationally infeasible for high-dimensional systems. The guided policy search

family of algorithms uses localized traditional trajectory optimization as a “teacher” for a global neural

network policy, and has been applied to tasks with vision input (Levine et al., 2016) and discontinuous

dynamics (Chebotar et al., 2017). Kalashnikov et al. (2018) used RL to learn a policy for robotic grasping of

a wide range of objects, sidestepping the data efficiency issue by using many robots at once and designing

3

a “self-resetting” environment. OpenAI et al. (2019) achieved simulation-to-reality transfer in dexterous

manipulation of a Rubik’s cube, while Hwangbo et al. (2017) and Molchanov et al. (2019) demonstrated it

for quadrotor control. We emphasize that these are only a few examples of successful applications of RL

to robotics.

RL also became an essential tool in game-playing AI. Silver et al. (2018) achieved superhuman per-

formance on the board game Go using a thoughtful combination of deep reinforcement learning and tree

search. (An earlier version reached this milestone but depended on supervised training data from human

players.) Later, Schrittwieser et al. (2020) replaced the assumption of known game rules with a learned

dynamics model, making the resulting algorithm (MuZero) applicable to a much larger set of RL problems.

New challenges At the same time, researchers were discovering downsides of deep RL. Henderson

et al. (2018) pointed out that the policy optimality achieved by deep RL algorithms is unusually sensitive

to the initial state (seed) of the algorithm’s pseudorandom number generator, as well as hyperparameters

and implementation details. In contrast, deep supervised learning accuracy is not sensitive to random

seed (Bhojanapalli et al., 2021). Engstrom et al. (2020) and Andrychowicz et al. (2020) showed that some

of the performance gains attributed to core algorithmic differences could in fact be explained by minor

implementation differences. Agarwal et al. (2021) pointed out that the high computational cost of deep RL

experiments leads to small sample sizes, which are often not treated with enough statistical care.

Anecdotally, researchers applying deep RL to a novel task significantly different from the popular

benchmarks generally cannot expect it to “just work”. Reward shaping, hyperparameter tuning, and com-

paring several algorithms are the norm. Henderson et al. (2018) reported that the performance ranking of

different algorithms is not consistent across different environments.

Non-RL combinations of learning and control Machine learning has useful applications in control

beyond RL. For example, Shi et al. (2019, 2021) integrate learned models with first-principles models in

4

Figure 1.1: Illustration of a subassembly in an early electromechanical autopilot (Sperry, 1921, U.S. Patent
1368226A). Electrical components are used for actuation and as an energy source, but the core control
policy is a physical mechanism.

a restricted manner to account for complex dynamics (of quadrotor ground effect and multi-quadrotor

downwash, respectively) while preserving a stability guarantee. Ideas from control theory can be used

to improve learning: Terzi et al. (2021) derive sufficient conditions that can be enforced upon a recurrent

neural network dynamics model to admit guarantees for a state observer, controller, and the model itself.

Singh et al. (2021) enforce a stabilizability condition on a learned dynamics model and show that it acts as

a regularizer, improving model accuracy over generic regression when the data set is small. Amos et al.

(2018) derive analytic derivatives of the outputs of a model-predictive control optimization problem and

use them for end-to-end imitation learning and system identification.

Historical remarks The fields of control theory and reinforcement learning are closely related. Histor-

ically, control theory developed mainly within the context of mechanical and electrical engineering and

5

was applied to electrical or physical systems. Control theory predates digital computers: continuous-time

controllers such as autopilots were implemented with analog electronics or even mechanisms with moving

parts (Sperry, 1921), as shown in the patent illustration of Figure 1.1.

Reinforcement learning developed mainly within the artificial intelligence research community. In

addition to practical applications, research was also tied to efforts to understand mechanisms of learning

in humans and animals. Sutton and Barto (2018) give a retrospective on the history of reinforcement

learning, including its relationship to optimal control.

1.1 Structure of dissertation

The remainder of this dissertation is organized into five chapters.

Chapter 2 provides the setting for our work. This chapter mainly focuses onmathematical foundations,

but also discusses some of the keymotivating ideas. In particular, §2.6 discusses families ofMarkov decision

processes and families of optimal control problems, including several examples. We use this formalism in

Chapters 3 and 6.

Chapter 3 presents our work on a deep reinforcement learning architecture for policies that can adapt

online to systems with widely varying dynamics. Similar to adaptive methods in control theory, our frame-

work is built on an online system identification process. We replace online estimation and optimization

with pre-trained neural networks to handle complex settings with low computational cost. We also experi-

ment with learned mapping from dynamics parameters to an embedding space. Our experiments highlight

some fundamental questions about themulti-system setting and about reinforcement learning itself, which

provide motivation for subsequent chapters.

Chapter 4 proposes a more structured alternative to reinforcement learning for systems where the dy-

namics are complex but the reward is simple and known. We learn a recurrent neural network dynamics

model from input-output trajectory data and apply traditional state-space estimation and control to the

6

abstract internal state of the RNN model. We apply this framework to robotic manipulation of deformable

objects. An ablation study demonstrates the benefit of using this closed-loop approach compared to feed-

forward planning using the model.

Chapter 5 begins the theoretical portion of this dissertation. We analyze the variance of the

REINFORCE policy gradient estimator for linear-quadratic regulator (LQR) systems. We provide upper

and lower bounds on the variance as a function of the system parameters. With respect to the dynamics

and cost matrices, our bounds are tight and closely match the behavior of the empirical variance. How-

ever, we also show that the variance is not directly correlated to the optimality of the policy produced

by the REINFORCE algorithm. This challenges the folklore that high-variance gradient estimates are the

dominant challenge in policy gradient methods.

Chapter 6 introduces the concept of suboptimal covering numbers as a way to quantify how much an

optimal policy for an infinite family of control problems must alter its behavior with respect to the problem

parameters. Suboptimal covering numbers are intuitive and have desirable mathematical properties such

as parameterization independence. We show matching logarithmic covering number bounds for single-

input fully-observable LQR problem families with actuator strength variations. For multi-input problems,

we present empirical work testing a conjectured upper bound and use visualizations to inspect the behavior

of candidate systems for a lower bound. We discuss work in progress and intermediate results towards

proving the matrix-case conjecture, and initial experiments regarding further expansion of the scope of

problem families.

7

Chapter 2

Foundation: Mathematics and Themes

Although the topics of each chapter in this dissertation are diverse, their mathematical foundations have

many ideas in common. This chapter defines notation and reviews important definitions and theorems we

will use. We assume the reader is familiar with some fundamental definitions in linear algebra, analysis,

probability, and differential equations.

We also take the opportunity in this chapter to introduce some common themes that appear repeatedly

in our work. In particular, we introduce notion of a structured family of control problems or Markov

decision processes, and review concepts such as robustness and adaptivity that are broadly applicable in

both traditional and learning-based control.

2.1 Notation

Sets For a set X , 2X denotes the power set {Y : Y ⊆ X}.

Linear algebra The notation A ≻ B (resp. A ⪰ B) indicates that the matrix A−B is positive definite

(resp. positive semidefinite). The sets of n × n positive definite and positive semidefinite matrices are

denoted by Sn++ and Sn+ respectively. For a matrix A ∈ Rn×n, the set of its eigenvalues are denoted by

Λ(A), its spectral radius is denoted by ρ(A) = max{|λ| : λ ∈ Λ(A)}, and the largest real part of its

eigenvalues is denoted by ρ+(A) = max{Reλ : λ ∈ Λ(A)}. Matrices or vectors of zeros and ones, with

8

dimension implied by context, are denoted by 0 and 1. The notation diag(x) (resp. diag(x1, . . . , xn))

refers to a diagonal matrix with the entries of the vector x (resp. the scalars or blocks x1, . . . , xn) on its

diagonal.

Functions and images The notation Y X indicates the set of all functions from X to Y . If f : X 7→ Y

and X ′ ⊆ X , we overload notation and denote the image of X ′ under f by

f(X ′) = {f(x) : x ∈ X ′}.

Similarly, we denote the inverse image of Y ′ ⊆ Y by

f−1(Y ′) = {x ∈ X : f(x) ∈ Y ′}.

Sequences The notation XN indicates the set of all X-valued sequences. The notation X<N indicates

the set of all finite X-valued sequences, i.e. X<N = ∪∞n=0X
n. When a sequence x0, x1, . . . has been

defined, the notation xm:n refers to the tuple (xm, xm+1, . . . , xn).

Norms and inner products For P ⪰ 0, we use the notation

⟨x, y⟩P = ⟨x, Py⟩

for its weighted inner product. For its induced norm, we use

∥x∥P =
√
⟨x, x⟩P .

9

Otherwise, the notation ∥·∥p for p ≥ 1 refers to the usual p-norm, i.e.

∥x∥p =

(
n∑
i=1

xpi

) 1
p

,

in which xi are the individual components of x. For a linear function F : X 7→ Y where X and Y are

vector spaces, the notation ∥F∥p,q refers to the p-q operator norm:

∥F∥p,q = max{∥Fx∥q : x ∈ X , ∥x∥p ≤ 1}.

Wealso apply the operator normnotation tomatrices based on the natural isomorphism to linear operators.

We denote the Frobenius norm of the matrix A by ∥A∥F =
√
trATA. We only use the norm notation

without subscripts when the particular norm is explicitly stated or clear from the context.

Probability If (X,Σ) is a measurable space, then we use the notation ∆(X,Σ) to denote the set of all

probability measures on (X,Σ). In cases where the sigma-algebra has already been stated or is common

(e.g. the power set whenX is finite; the Borel sigma-algebra whenX is a topological space), we often use

the notation∆(X).

For a function f : X 7→ ∆(Y), if the density function (Radon-Nikodym derivative) exists for all

measures in f(X), we use the notation f(·|x) to denote the density function of f(x).

Indicator functions Let X denote some set and P a logical predicate on X . We use the notation

I[P](x) =

1 : P (x)

0 : ¬P (x).

For a subset S ⊆ X and the predicate P (x) = x ∈ S, we use the shorthand I{S} instead of I[x∈S].

10

Topology A topological space (X,T) is defined by a set X and a collection of “open” sets T ⊆ 2X that

is closed under arbitrary unions and finite intersections. For arbitrary Y ⊆ X , the interior of Y is denoted

by intY = ∪{S ∈ T : S ⊆ Y }.

2.2 Fundamentals

2.2.1 Metrics

Recall that a metric on a set X is a function d : X ×X 7→ R satisfying the properties for all x, y, z ∈ X :

• Identity of indiscernibles: d(x, y) = 0 ⇐⇒ x = y.

• Symmetry: d(x, y) = d(y, x).

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

From these properties, nonnegativity d(x, y) ≥ 0 can be derived. A semimetric onX satisfies nonnegativ-

ity, symmetry, and the identity of indiscernibles, but does not satisfy the triangle inequality. Notably, the

squared Euclidean distance ∥x− y∥22 is a semimetric.

2.2.2 Lipschitz and smooth functions

Suppose (X, dX) and (Y, dY) are metric spaces We say f : X 7→ Y is L-Lipschitz for L > 0 if, for all

x, x′ ∈ dom f ,

dY (f(x), f(x
′)) ≤ LdX(x, x′).

Most commonly, we study Lipschitz functions in normed vector spaces where dX and dY are norm-induced

metrics.

If the function f : Rn 7→ R is differentiable and its gradient is β-Lipschitz, that is,

∥∥∇f(x)−∇f(x′)∥∥ ≤ β∥∥x− x′∥∥,
11

we say f is β-smooth.

2.2.3 Orthogonal and Euclidean groups

The general linear group, denoted GL(n), is the group of invertible linear operators on n-dimensional

Euclidean space over the field of real numbers, with composition as the group operation.

The subset ofGL(n) that is distance-preserving forms a subgroup, the orthogonal groupO(n). Under

the Euclidean topology, the groupO(n) has two connected components. The component that contains the

identity is a subgroup, denoted SO(n), and consists of those elements of O(n) that preserve orientation.

These are the familiar rotations when n = 2 or 3.

The notation so(n) refers to the Lie algebra associated with SO(n), which corresponds to the tangent

space of SO(n) at the identity. It is beyond the scope of this dissertation introduce Lie groups and Lie

algebras with satisfactory rigor. For our purposes, we can think of each element of so(n) as a “rotational

velocity”.

The Euclidean group, denoted E(n), are the operators that are distance-preserving but not necessarily

linear. The special Euclidean group SE(n) is the orientation-preserving subgroup ofE(n). The group SE(3)

describes the full “pose” of a rigid object in three-dimensional space. SE(3) is isomorphic to SO(3)×R3.

The groups SO(3) and SE(3) appear often in robotics. The associated Lie algebra se(3) is isomorphic

to so(3) × R3, and also appears often in robotics to describe the full “velocity state” of a rigid object in

three-dimensional space, sometimes called the twist.

There are several ways to represent elements of SO(3) for computation, including the 3× 3 matrices

themselves, the unit quaternions, pairs of a unit vector axis and a rotation angle, triples of rotation angles

around fixed axes (Euler angles), and skew-symmetric matrices for elements of so(3). Although the latter

three representations are parameterized by R3, the incompatible topologies of R3 and SO(3) imply that

12

any mapping from R3 to SO(3) must suffer from at least one of the following problems: incompleteness,

multiple-covering, or discontinuity.

2.3 Optimization

Mathematical optimization is a generic framework that permeates many aspects of robotics, including

planning, control, machine learning, and multi-robot coordination. An optimization problem has the form

minimize f(x)

subject to x ∈ X ,
(2.1)

where X is some set and f : X 7→ R is some function. In this dissertation we are mainly concerned

with continuous optimization, where X is an uncountable set endowed with notions like topology, metric,

inner product, etc. (By contrast, in combinatorial optimization the set X is finite, although possibly very

large.) If X = Rn for some n, we say the problem is unconstrained. On the other hand, if X ⊂ Rn, we say

the problem is constrained. For constrained problems we usually define membership in X by equality and

inequality constraints, resulting in the form

minimize f(x)

subject to g(x) = 0

h(x) ≤ 0,

(2.2)

where g and h are arbitrary vector-valued functions.

Local and global optima If x ∈ X is a true solution to the generic optimization problem (2.1), we say it

is a global optimum. On the other hand, we say x is a local optimum if there exists an open set B such that

x ∈ B and f(x) ≤ f(x′) for all x′ ∈ B∩X . Depending on the structure of the optimization problem, it may

13

not be computationally feasible to seek a global optimum. An important class of optimization problems

for which we can find a global optimum with polynomial query complexity are the convex optimization

problems, discussed in §2.4.

2.4 Convexity

A set X ⊆ Rn is convex if, for any x, x′ ∈ X and θ ∈ [0, 1], it holds that

(1− θ)x+ θx′ ∈ X .

Example 2.4.1. Some commonly encountered convex sets are:

• Rn itself.

• Norm balls {x ∈ Rn : ∥x∥p ≤ r} of any radius r ≥ 0 for 1 ≤ p ≤ ∞. Note that the p-norm ball for

p < 1 is not convex.

• Polytopes / polyhedra of the form

{x ∈ V : Ax ≤ b},

whereA is a linear map from V to some other vector spaceW , b ∈W , and≤ denotes simultaneous

elementwise satisfaction.

• The set of n× n positive semidefinite matrices Sn+.

• Degenerate cases: The empty set, the singleton set {x} for x ∈ Rn.

Theorem 2.4.2 (Properties of convex sets). If S and T are convex sets, then . . .

• Intersections: S ∩ T is convex.

14

• Minkowski sums: {s+ t : s ∈ S, t ∈ T } is convex.

• Cartesian products: If we define vector space operations for S ×T in the natural way, then S ×T is

convex.

• Affine images: If f is an affine function, then the image f(S) is convex.

2.4.1 Convex functions

The epigraph of a function f : X 7→ R, where X ⊆ Rn, is the set

epi f = {(x, r) : x ∈ X , r ≥ f(x)} ⊆ Rn+1.

If the epigraph of f is convex, we say f is a convex function. Equivalently, f is convex if and only if it

satisfies Jensen’s inequality:

f((1− θ)x+ θx′) ≤ (1− θ)f(x) + θf(x′)

for all x, x′ ∈ X and θ ∈ [0, 1]. Jensen’s inequality can be generalized to a probabilistic form: if X is a

random variable, then

f(E[X]) ≤ E[f(X)].

We say a function f is concave if −f is convex. Convex functions satisfy the following properties:

• If f and g are convex, then f + g is convex. More generally, any nonnegative weighted sum of

convex functions is convex.

• f(Ax+ b) is convex. (Affine composition)

15

• If F is a (potentially infinite) set of convex functions on domain X , then the pointwise supremum

function supf∈F f(x) is convex in x.

2.4.1.1 Subdifferentials

Suppose X ⊆ Rn is a convex set and f : X 7→ R is a function. We say that g ∈ Rn is a subgradient of f at

x0 ∈ X if, for all x ∈ X , we have

f(x0) + ⟨g, x− x0⟩ ≤ f(x).

The subdifferential of f at x0, denoted by ∂f(x0), is the set of all subgradients of f at x0. The subdifferential

is a convex set. If ∂f(x) ̸= ∅ for all x ∈ intX , then f is convex. Conversely, if f is convex, then ∂f(x) ̸= ∅

for all x ∈ X . If f is differentiable at x , then ∂f(x) is a singleton set. If g : Rn 7→ R is convex, then

x ∈ Rn is a local optimum of g if and only if 0 ∈ ∂g(x). These properties are proved by Bubeck (2015).

2.4.1.2 Convex optimization problems

A convex optimization problem is a problem of the form

minimize f(x)

subject to x ∈ X ,
(2.3)

where X is a convex set and f is a convex function. There is much to be said about convex optimization

problems (Nesterov, 2003; Boyd and Vandenberghe, 2004; Bubeck, 2015), but the most important facts are

the following:

• If x is a local optimum of a convex optimization problem, then it is also a global optimum.

16

• There exist algorithms to find an approximately optimal solution for convex optimization problems

that are polynomial-time in the relevant properties of f and X , even under very weak “membership

oracle” access to X (Abernethy and Hazan, 2016).

2.4.2 Strong convexity

A function f is µ-strongly convex with respect to some norm ∥·∥ if there exists µ > 0 such that, for all

x, y ∈ dom f and all g ∈ ∂f(x),

f(y) ≥ f(x) + ⟨g, y − x⟩+ µ

2
∥y − x∥2. (2.4)

Informally, strongly convex functions are “at least as convex” as a quadratic function. Strong convexity

leads to improved convergence rates of first-order optimization algorithms (Bubeck, 2015).

2.4.3 Quasiconvex functions

Definition 2.4.3. A function f : D 7→ R on the convex domain D ⊆ Rn is quasiconvex if its sublevel

sets Dα = {x ∈ D : f(x) ≤ α} are convex for all α ∈ R.

All convex functions are quasiconvex, but not all quasiconvex functions are convex: for example, the

function −e−x2 as shown in Figure 2.1.

−2 −1 0 1 2

−1

−0.5

0

Figure 2.1: The function −e−x2 is quasiconvex but not convex.

17

Lemma 2.4.4 (Boyd and Vandenberghe (2004), §3.4). The following facts hold for quasiconvex functions on

a convex D ⊆ R (equivalently, D is an interval).

(a) If f : R 7→ R is continuous, then f is quasiconvex if and only if at least one of the following conditions

holds on D:

1. f is nondecreasing.

2. f is nonincreasing.

3. There exists c ∈ D such that for all t ∈ D, if t < c then f is nonincreasing, and if t ≥ c then f is

nondecreasing.

(b) If f : R 7→ R is twice differentiable and
d2f

dx2
> 0 for all x ∈ D where

df

dx
= 0, then f is quasiconvex

on D.

(c) If f(x) =
p(x)

q(x)
, where p : R 7→ R is convex with p(x) ≥ 0 on D and q : R 7→ R is concave with

q(x) > 0 on D, then f is quasiconvex on D.

2.4.4 Convex optimization algorithms

Suppose f : Rn 7→ R is a convex function and that the optimum

x⋆ = argmin
x∈Rn

f(x)

exists. In this section we sketch the main results for optimization of a convex function under the first-

order oracle model, in which the algorithm can query ∇f(x) for arbitrary x but has no further structural

knowledge of f(x). The first-order oracle falls in the broader class of black-box optimizationmodels, which

also includes zeroth-order oracles where only f(x) can be queried.

18

Many black-box optimization algorithms require an initial guess x0 and generate an infinite sequence

of iterates x1, x2, . . . A central object of study for such algorithms is their convergence rate: a bound of

the form

f(xk)− f(x⋆) ≤ b(k),

where the function b(k) : N 7→ R≥0 depends on properties of f and the distance R = ∥x0 − x⋆∥.

Gradient descent The simplest procedure to optimize f is (sub)gradient descent: starting with an initial

guess x0 ∈ Rn, we follow the recurrence

xk+1 = xk − η∇f(xk),

where η > 0 is a step size parameter. When f is not differentiable, we can understand ∇f(x) to denote

an arbitrary deterministic selection from ∂f(x).

When f belongs to the following function classes, (sub)gradient descent with the appropriate choice

of η leads to the following convergence rates (Bubeck, 2015):

• L-Lipschitz: O
(
RL√
k

)
.

• β-smooth: O
(
R2β

k

)
.

• β-smooth and µ-strongly convex: O
(
R2 exp

(
− k

β/µ

))
.

19

Accelerated gradient descent A computationally inexpensive modification of gradient descent intro-

duced by Nesterov (1983) turns out to yield improved convergence rates. Starting with the initial guess

y0 = x0 ∈ Rn, we follow the recurrence

xk+1 = yk −
1

β
∇f(yk),

yk+1 = xk+1 +

√
β −√µ
√
β +
√
µ
(xk+1 − xk).

Accelerated gradient descent leads to the following convergence rates (Bubeck, 2015):

• β-smooth: O
(
R2β

k2

)
.

• β-smooth and µ-strongly convex: O
(
R2 exp

(
− k√

β/µ

))
.

Note that the ratio β
µ ≥ 1 according to the definitions of smoothness and strong convexity.

Lower bounds The convergence rates attained by gradient descent and accelerated gradient descent are

optimal. For any algorithm in the first-order oracle model that satisfies

xk+1 ∈ span(g1, . . . , gk),

where gk is the (sub)gradient queried at step k, there exists aL-Lipschitz convex function, a β-smooth con-

vex function, and a β-smooth and µ-strongly convex function for which f(xk)− f(x⋆) is lower-bounded

by Ω(1/
√
k), Ω(1/k2), and Ω(exp(−k)) respectively (Bubeck, 2015).

2.5 Markov decision processes

The formalism ofMarkov decision processes captures a wide range of problems in which an agent interacts

with a dynamical system.

20

Definition 2.5.1. A discrete-time Markov decision process (MDP) is defined by the tuple (X ,U , P, r, µ)

where:

• X is the state space,

• U is the action space,

• P : X × U 7→ ∆(X) is the state transition map,

• r : X × U 7→ R is the reward function, and

• µ ∈ ∆(X) is a distribution over initial state.

The agent interacts with the MDP in the following manner:

• The initial state is sampled: x0 ∼ µ.

• At each time step t ∈ N, the agent observes the current state xt ∈ X and takes an action ut ∈ U .

• The agent receives and observes the reward rt = r(xt, ut).

• The next state is sampled according to xt+1 ∼ P (xt, ut).

The property that

P (xt+1|xt, ut) = P (xt+1|x1, u1, . . . , xt, ut)

is called the Markovian property.

Any method for choosing actions in a MDP is called a policy. A fully general definition of policies

includes all functions X × (X × U × R)<N 7→ ∆(U). That is, in addition to the current state, the policy

could depend on the full sequence of states, actions, and rewards from previous timesteps. However, the

Markovian property implies that history-dependent policies are unnecessary for optimality. A stationary

policy is a function X 7→ ∆(U) that does not depend on the history or time index. A policy is called

21

deterministic if it only outputs point distributions. When discussing deterministic policies we state the

policy class codomain as U instead of∆(U).

If either of X and U are uncountable sets, then many mathematical statements about an MDP require

substantial technical delicateness and additional conditions on P , r, and µ to ensure that derived objects

of interest exist, are unique, and satisfy properties such as measurability. A thorough treatment of these

issues is given by Bertsekas and Shreve (1978). To keep this section simple, we limit our discussion to

finite MDPs. However, we emphasize that many of the core ideas, such as Bellman optimality, still hold in

uncountable spaces under mild assumptions.

2.5.1 Partially observable Markov decision processes

In the standard MDP, the agent observes the full state xt. This is often unrealistic. To model incomplete

state observations, we introduce the notion of partial observability:

Definition 2.5.2. A discrete-time partially observable Markov decision process (POMDP) is defined by the

tuple (X ,U ,Y, P, r, h, µ) where:

• X , U , P, r, µ are as in Definition 2.5.1,

• Y is a measurable observation space,

• h : X × U 7→ ∆(Y) is the observation function.

The agent interacts with the MDP in the following manner:

• The initial state is sampled: x0 ∼ µ.

• At each time step t ∈ N, the agent observes a single sample yt ∼ h(xt, ut) and takes an action

ut ∈ U . The agent does not observe xt.

• The agent receives and observes the reward rt = r(xt, ut).

22

• The next state is sampled according to xt+1 ∼ P (xt, ut).

In the case where X ,U ,Y are all finite, computing an optimal finite-horizon policy when P, r, h, µ

are known is PSPACE-complete (Papadimitriou and Tsitsiklis, 1987). This implies that a vast universe of

computational problems can be reduced to policy optimization for a POMDP.

From the perspective of control theory, partially observable settings are the norm. It is often expensive

or impossible to equip a physical system with enough sensors to measure all states. The task of estimating

state from a history of inputs and outputs is known as state estimation. In linear dynamical systems,

state estimation becomes mathematically and computationally tractable, as we will discuss in §2.9.1.7. In

nonlinear continuous-state systems it is generally difficult to provide performance guarantees for state

estimation, but straightforward extensions of the linear methods often work well in practice when the

system dynamics are smooth and the sensors are not too noisy.

Remark 2.5.3. The MDP model is more expressive than it may initially appear. For example, we can model

a system where the dynamics change over time by adding a time index variable to the state space.

2.5.2 Trajectories

We refer to a record of interaction with an MDP as a trajectory and use the notation

τ = (x0, u0, r0), (x1, u1, r1), . . .

We refer to the space of all possible trajectories, with an “ambient” MDP implied by context, as T. Note

that Tmay be finite-dimensional or a sequence space. A policy π : X 7→ ∆(U) induces a distribution over

T governed by

x0 ∼ µ, ut ∼ π(xt), rt = r(xt, ut), xt+1 ∼ P (xt, ut). (2.5)

23

We will denote this distribution by τ π . When we use the notation τ ∼ τ π , it should be understood as a

shorthand for the statement (2.5).

2.5.3 Infinite-horizon MDPs

An infinite-horizonMDP is one where time goes on forever, t→∞. For infinite-horizon MDPs, we define

the state-value function, or simply value function, V π : X 7→ R of the policy as the discounted sum

V π(x) = E

[∞∑
t=0

γtr(xt, ut)

∣∣∣∣∣ π, x0 = x

]
(2.6)

for γ ∈ (0, 1], where the expectation is taken over the randomness of the dynamics P and of the policy

π. If the reward r is bounded, then a discount factor γ < 1 ensures that V π is bounded. In some special

cases (such as linear-quadratic regulators, see §2.9.1.6), it can be shown that V π is bounded for all policies

of interest even though r is unbounded, in which case γ = 1 is safe to use.

Similarly, we define the action-value function or Q-function of π as

Qπ(x, u) = E

[∞∑
t=0

γtr(xt, ut)

∣∣∣∣∣ π, x0 = x, u0 = u

]
.

MDP objective The optimization goal for infinite-horizon MDPs is to solve

maximize
π∈∆(U)X

E
s∼µ

[V π(s)], (2.7)

24

2.5.3.1 Bellman equations and operators

From the infinite-horizon value function definition (2.6), we immediately see its recursive nature:

V π(x) = E

[∞∑
t=0

γtr(xt, ut)

∣∣∣∣∣ π, x0 = x

]

= E
u∼π, x′∼P (x,u)

[
r(x, u) +

∞∑
t=1

γtr(xt, ut)

∣∣∣∣∣ π, x′
]

= E
u∼π, x′∼P (x,u)

[
r(x, u) + γV π(x′)

]
,

(2.8)

where the first step uses linearity of expectation and the last step uses the Markov property. Alternatively,

we can define the Bellman operator for π, denoted as T π : RX 7→ RX , by

(T πV)(x) = E
u∼π(x), x′∼P (·|x,u)

[
r(x, u) + γV (x′)

]
.

Intuitively, T π takes an arbitrary value function V and returns a value function “more like” the V π . We

can now rewrite the conclusion of eq. (2.8) as

T πV π = V π.

In other words, V π is a fixed point of T π .

This gives us a way to characterize and compute V π for a given π, but it does not give us a way to

characterize or compute an optimal π. For this, we define optimal value function and optimal Q-function as

V ⋆(x) = sup
π
V π(x),

Q⋆(x, u) = sup
π
Qπ(x, u).

25

We define the Bellman optimality operator, denoted by T ⋆ : RX×U 7→ RX×U , by

(T ⋆Q)(x, u) = r(x, u) + γ E
x′∼P (x,u)

[
max
u′∈U

Q(x′, u′)

]
. (2.9)

We say a function Q ∈ RX×U satisfies the Bellman optimality equations if

T ⋆Q = Q. (2.10)

It can be shown that (Agarwal et al., 2022):

• Q = Q⋆ if and only ifQ is a fixed point of T ⋆ (that is, if it satisfies the Bellman optimality equations).

• For any infinite-horizon MDP, an optimal stationary and deterministic policy exists.

• T ⋆ is a γ-contraction mapping with respect to the∞-norm.

Taken together, these propositions imply that the recurrence

Q(0) = 0, Q(k+1) = T ⋆Q(k)

will converge toQ⋆, and that any policy satisfying π(x) ∈ argmax u∈U Q
⋆(x, u) is an optimal policy. The

algorithm defined by computing this recurrence is known asQ-value iteration. Note thatQ-value iteration

requires full knowledge of P and r.

2.5.4 Finite-horizon objective

In an episodic or finite-horizon MDP, the agent interacts with the environment for a fixed number of time

steps, denoted by H ∈ N, and is then reset back to an initial state x0 ∼ µ. For the finite-horizon case, the

value andQ functions are different for each time step. This implies that optimal policies for finite-horizon

26

MDPs are time-dependent in general: we must consider the policy class of functions X × N 7→ ∆(U).

However, in this dissertation we are only concerned with optimizing stationary policies, even in finite-

horizon settings. Therefore, for the purposes of this dissertation, for each h ∈ {0, . . . ,H − 1} we define

V π
h (x) = E

[
H−1∑
t=h

r(xt, ut)

∣∣∣∣∣ π, xh = x

]
,

and

Qπh(x, u) = E

[
H−1∑
t=h

r(xt, ut)

∣∣∣∣∣ π, xh = x, uh = u

]
,

where again the expectations are over the randomness in P and π. For the purposes of this dissertation,

the core optimization problem in finite-horizon MDPs is to solve

maximize
π∈∆(U)X

E
x∼µ

[V π
0 (x)]. (2.11)

Time-dependent equivalents of the Bellman optimality results described for infinite-horizon MDPs in

§2.5.4 exist for finite-horizon MDPs. Stating these results requires more notational bookkeeping and is not

used subsequently in this dissertation, so we omit them here. The proofs follow the same spirit, using the

additivity of the value function and the Markov property of the dynamics.

Remark 2.5.4. Some classes of stochastic bandit problems (Lattimore and Szepesvári, 2020) can be inter-

preted as a degenerate case of episodic MDPs with H = 1. For contextual bandits, the context becomes

the state, while for pure bandits the state space becomes a singleton set.

27

2.6 Families of MDPs

In this dissertation we will often be interested in discussing a family of MDPs with X ,U in common but

differences in one or more of P, r, µ. When this arises, we use the notation Φ to refer to this family, and

ϕ ∈ Φ for a particular MDP in the family. When working with a family of MDPs, we use the notation

P (·|x, u;ϕ), r(x, u;ϕ), µ(·|ϕ)

to denote the “master” dynamics, reward, and initial state distributions that also depend on ϕ. We use

the subscripted terms (Pϕ, rϕ, µϕ) to identify the transition dynamics, reward function, and initial state

distribution for a particular ϕ ∈ Φ.

We will also use this notation to refer to families of optimal control problems that do not necessarily

fit our discrete-time finite MDP formalism precisely. For example, we will use it to describe families of

continuous-time linear dynamical systems in Chapter 6.

We are most interested in cases where Φ is highly structured. We now give a list of such examples.

2.6.1 Dynamics variations

In each of the following examples, only the dynamics P change.

Kinematic-chain robots The family Φ represents a set of robots with a common kinematic topology

but with variations in mass, geometry, actuator strength, coefficients of friction, and so on. The state

space X is described by the position in SE(3) of the kinematic root, the combined rotational and angular

velocities in se(3) of the kinematic root, and the angles and velocities of the joints, which applies to all

robots. The action space U is torque commands for the joint actuators.

28

Aircraft The family Φ represents a set of aircraft. For practical purposes, the state is fully described as a

rigid body. For a family of quadrotors, the action space U is four rotor thrusts. For a family of twin-engine

airplanes, the action space U is two engine thrusts and the positions of the ailerons, elevators, and rudder.∗

Φ represents variations in mass, moments of inertia, thruster configuration, and aerodynamic properties

that lead to different dynamics.

Manipulated rigid objects The family Φ represents different objects that may be held in the gripper of

a robot. The objects are rigid, so their state is fully described by an element of SE(3) × se(3). However,

the objects have different shapes, masses, and moments of inertia, resulting in different dynamics for the

complete system of a force/torque-controlled robot grasping the object.

Deformable objects materials The family Φ represents variations in material properties of a de-

formable object that may be held in the gripper of a robot. Each variation shares the same shape, so its

state is fully described by the same infinite-dimensional continuum state. However, the objects have dif-

ferent material properties leading to varying levels of springiness, compressibility, etc. Again, this results

in different dynamics for the coupled robot-object system.

Game opponents The family Φ represents one player’s side of a two-player competitive game with

varying opponent strategies. The reward r is zero until the game reaches a completed state. Different

strategies of the opponent lead to different dynamics.

2.6.2 Reward variations

In each of the following examples, only the reward function r changes.
∗These models are simplifications that are only reasonable under the assumption of smooth and Lipschitz control inputs.

29

Navigation goals The state space X ⊆ R3 is some free space in the physical world. The action space

U = R3 is the desired robot velocity. The dynamics are simple integration combined with collision dy-

namics. The reward is d(x, g) where g ∈ X is a goal state and d is a semimetric on X .

Object arrangement A robot manipulates a set of objects on a desk. The state space X is the positions

of the objects, alongside the robot state. The action space U includes the ability to move, close, and release

the robot’s gripper. The reward encodes the user’s preferences for how the objects are arranged. For

example, the user might want long objects to always be parallel to one of the desk edges. Alternatively,

the user might want all objects packed as tightly as possible on one side of the desk.

Driving styles In an autonomous car, the reward r might encode the passenger’s preferences regarding

speed, aggressiveness, smoothness of motion, avoiding freeways, and so on.

Performance-efficiency tradeoffs Many robotics applications confront the system designer with a

tradeoff between performance (time to complete a task, precision of tracking a trajectory, . . .) and the

amount of energy or other resources used. Changing the balance results in different reward functions.

2.7 Reinforcement learning

Reinforcement learning (RL) refers to the task of learning an optimal policy for an MDP—that is, solving

the optimization problem (2.7) or (2.11)—without prior knowledge of the dynamics P , the reward r, or the

initial state distribution µ. In the standard formulation of RL, we can only learn information about the

MDP by interacting with it through the agent “interface” of Definition 2.5.1. That is, we are placed in the

state x0, we take actions, observe the reward and next state, and the environment eventually resets in the

finite horizon case.

30

On the other hand, computing an optimal policy when P , r, and µ are known is called solving the

MDP in reference to the Bellman optimality equation T ⋆Q = Q (§ 2.5.3), which can be solved directly

using linear programming or value iteration in the finite-state case. In between there is a spectrum of

interfaces with the MDP. For example, we may have an “oracle” or “generative model” to sample P from

any state and action instead of just the current state. In robotics the reward r is often known and designed

by the robotics engineer to achieve some practical goal. We may have the ability to reset the MDP to

x0 ∼ µ as desired.

There are a great many algorithms for reinforcement learning. In this dissertation, we will only explore

one family of algorithms in depth: the policy gradient family, as defined in § 2.7.2. We analyze a policy

gradient method in Chapter 5.

2.7.1 On and off-policy algorithms

Reinforcement learning algorithms can be classified as either on-policy or off-policy. On-policy algorithms

can only make use of data that was generated by the current iterate of the policy being optimized. Off-

policy algorithms can use data that was generated by a different behavior policy. Off-policy algorithms

tend to be more complicated.

The off-policy data is often, but not always, from an earlier iterate of the policy being optimized.

Initializing the store of off-policy data with human (or other “expert”) demonstrations is a simple and

powerful way to guide RL towards an optimal policy without the need for oracle access to the “expert”

policy. The off-policy data may also be generated by a strategic exploration method, whereas in on-policy

algorithms the exploratory actions must be part of the policy.

31

2.7.2 Policy gradient methods

Policy gradient methods are an important class of reinforcement learning algorithms built upon generic

techniques for stochastic optimization. We first introduce the generic technique, and then discuss its

properties when instantiated for the RL problem.

2.7.2.1 Log-derivative trick

LetX denote somemeasurable set and consider a parameterized family of probability distributions overX .

We have a parameter space Θ. Each θ ∈ Θ induces a distribution pθ ∈ ∆(X). Now additionally consider

a measurable function f : X 7→ R and the optimization problem

minimize
θ∈Θ

E
x∼pθ

f(x).

It is natural to attempt to solve this optimization problem with gradient descent (introduced in § 2.4.4)

over θ. However, without strong restrictions on the form of f and the pθ , it is generally impossible to

obtain analytic derivatives for this objective. More importantly, there are many situations where we do

not know the full description of f , but only have a zeroth-order oracle access. This means we can query

the value of f(x) for any x ∈ X , but we cannot compute the gradient ∇f(x). (For example, evaluating f

involves interacting with the real world.) In such situations, we can apply the following trick.

Theorem 2.7.1. If pθ is a parameterized family of probability distributions where the probability density

exists and is differentiable with respect to the parameter θ, and other sufficient technical conditions are met

(L’ecuyer, 1990, and references therein), then

∇θ
[

E
x∼pθ

f(x)

]
= E

x∼pθ
[∇θ log pθ(x)f(x)] . (2.12)

32

Proof. Assuming sufficient conditions hold to apply Leibniz’s rule, we have

∇θ
[

E
x∼pθ

f(x)

]
= ∇θ

∫
x∈X

pθ(x)f(x)dx

=

∫
x∈X
∇θpθ(x)f(x)dx

=

∫
x∈X

pθ(x)

pθ(x)
∇θpθ(x)f(x)dx

=

∫
x∈X

pθ(x)∇θ log pθ(x)f(x)dx

= E
x∼pθ

[∇θ log pθ(x)f(x)] .

(2.13)

After applying Theorem 2.7.1, the gradient may then be approximated by a finite sample as

∇θ E
x∼pθ

f(x) ≈ 1

N

N∑
i=1

∇θ log pθ(xi)f(xi), (2.14)

where each xi ∼ pθ . To compute this expression, we require the following:

• Ability to sample from pθ .

• Ability to compute the log-density gradient∇θ log pθ(x).

• Zeroth-order oracle for f .

and we do not require the following:

• Ability to sample from any other distribution over X .

• First-order oracle for∇xf .

33

2.7.2.2 Policy gradient algorithm

Now we instantiate the log-derivative trick for the RL problem. Suppose our policy class Π is parame-

terized: we have a parameter space Θ ⊆ Rd and a joint parameter/state policy ϖ : Θ×X 7→ ∆(U). We

further assume that for all ofΘ×X the output ofϖ admits a Radon-Nikodym derivative (density function),

denoted by ϖ(·|x, θ) : U 7→ R≥0, and that ϖ(·|x, θ) is differentiable with respect to θ. Using trajectory

notation (§2.5.2), let

R(τ) =
H−1∑
t=h

r(xt, ut).

Let πθ denote the partial application of ϖ for the parameter θ. We can then state the RL objective as

maximize
θ

E
τ∼τπθ

[R(τ)]. (2.15)

We may perform gradient descent on the objective (2.15) by applying Theorem 2.7.1, yielding

∇θ E
τ∼τπθ

[R(τ)] = E
τ∼τπθ

[∇θ log τ πθ(τ)R(τ)] . (2.16)

The R(τ) term is obtained as a direct effect of sampling τ from the MDP. The first term expands to

∇θ log τ πθ(τ) = ∇θ log

(
µ(x0)

H−1∏
t=0

πθ(ut|xt)P (xt+1|xt, ut)

)

= ∇θ

(
logµ(x0) +

H−1∑
t=0

log πθ(ut|xt) + logP (xt+1|xt, ut)

)

= ∇θ logµ(x0) +
H−1∑
t=0

∇θ log πθ(ut|xt) +∇θ logP (xt+1|xt, ut)

=

H−1∑
t=0

∇θ log πθ(ut|xt).

(2.17)

Critically, the initial state distribution µ and the transition dynamics P do not appear in the final line.

This means it is possible to approximate the gradient of the RL objective (2.15) only by interacting with

34

the MDP using πθ and evaluating ∇θ log πθ(·|·) on the sampled actions. Putting it all together, we see the

typical form known as REINFORCE (Williams, 1992):

E[ĝ] = ∇θ E
τ∼τπθ

[R(τ)], ĝ =

(
H−1∑
t=0

rt

)(
H−1∑
t=0

∇θ log πθ(ut|xt)

)
. (2.18)

This can be approximated by a finite sample of interactions with the MDP and used to perform gradient

descent. In general the RL objective is not convex, so the convergence rate guarantees for gradient descent

presented in §2.4.4 do not apply. As we can observe from the sampling distribution in (2.18), policy gradient

methods are on-policy algorithms (§2.7.1).

The gradient estimator ĝ is unbiased, but in practice it can have very high variance. If a sample ĝ that

is far from E[ĝ] is used in gradient descent, it can potentially cause a drastic and undesirable change in πθ ,

and thus also in τ πθ . Various tricks have been proposed to reduce variance, for example subtracting an

action-independent “baseline”, also known as a control variate (Greensmith et al., 2004), and using a trust

region (Schulman et al., 2015).

Another important limitation of policy gradient algorithms is that they depend on the stochasticity of

the policy πθ to explore the MDP. It is critical that θ be initialized to a policy with high action entropy and

that the action distribution does not collapse. One popular method to (heuristically) achieve the latter is

entropy regularization, where a bonus is added to the reward that encourages high-entropy conditional

action distributions and/or state visitation distributions. Entropy regularization can also yield policies

more robust to changes in the MDP dynamics (Eysenbach and Levine, 2021).†

By contrast, off-policy RL algorithms and can use exploration procedures that are independent of the

current policy iterate. Exploration based on the principle of optimism in the face of uncertainty is especially

powerful in off-policy algorithms, where it can deliver sample complexity bounds unavailable under naive
†The discussion of Eysenbach and Levine (2021) also provides a good survey of other motivations and results for entropy

regularization.

35

(ϵ-greedy) exploration (Jin et al., 2018). Recently, optimism in the face of uncertainty has been adapted to

policy gradient methods (Agarwal et al., 2020).

2.8 Control theory paradigms

Traditionally, the field of control theory is concerned with MDP-like settings in which the state space X

is (some subset of) Rn and a reasonable model of the transition dynamics P is available. The model is

usually either derived from physics or estimated from interacting with the real system.

In the case of physics-derived models there are often parameters that must be supplied, for example

spring constants, masses, and so on. However, these parameters can often be identified using scientific

experiments “outside” the MDP. For example, we may remove a spring from an assembly and measure its

spring constant directly with a weight scale and a ruler.

2.8.1 System identification

The process of estimating a model or parameters from interacting with the real system (i.e. through the

MDP “interface”) is known as system identification. There are two components to system identification:

some way to estimate ϕ from a state-action sequence x0:T , u0:T−1, and some scheme for choosing the

inputs u0:T−1 to make the estimation problem easy (or possible at all).

One way to formalize the system identification problem is as maximum-likelihood estimation (MLE)

problem, where our goal is to select the ϕ under which the observed sequence was most probable:

maximize
ϕ∈Φ

Pr(x1:T |u0:T−1;x0, ϕ). (2.19)

36

This is equivalent to maximizing the logarithm of the likelihood. Taking the logarithm and using the

Markov assumption, we have

log Pr(x0:T |u0:T−1;ϕ) = log µ(x0|ϕ) +
T∑
t=1

logP (xt|xt−1, ut−1;ϕ).

Assuming the whole-family dynamics density P (·|x, u;ϕ) is known and is differentiable with respect to ϕ,

the maximum-likelihood objective (2.19) is also differentiable with respect to ϕ, so the MLE problem is

amenable to numerical optimization. On the other hand, if P (·|x, u;ϕ) is unknown or is only accessible via

black-box sampling (i.e. a non-differentiable simulator), the problem (2.19) is no longer easy to optimize.

An alternative is to simply learn a function that maps (x0:T , u0:T−1) directly to an estimate of ϕ. The

field of deep learning (§2.11) provides powerful function classes such as recurrent and convolutional neural

networks that are well-suited to representing such a function. Our work in Chapter 3 implements this idea.

2.8.1.1 Persistence of excitation

Persistence of excitation refers to a sufficient condition on input signals to ensure that the solution of the

system identification problem (2.19) converges to the true ϕ in the limit of infinite data. For linear systems,

it is possible that inputs from a stabilizing linear feedback controller can fail to be persistently exciting. In

other words, the goals of 1) minimizing some optimality criterion and 2) correctly identifying ϕmay be in

conflict with each other. In this dissertation we are not concerned with the precise definition of persistent

excitation for linear systems, but the overall concept is a key motivation for the methods we propose in

Chapter 3.

2.8.2 Control with known model

Many published results in control theory provide guarantees under the assumption that an error-free

dynamicsmodel is available. In general, there is no reason to believe that these guaranteeswill be preserved

37

if the controller is deployed on a system different from themodel. In certain cases it is safe, such as the fully

observable LQR problem (§2.9.1.6) with uncertainty in the input matrix (Safonov and Athans, 1977). On

the other hand, introducing partial observability to this same setting can be catastrophic: the famous note

of Doyle (1978) gave an example of a system where an arbitrarily small model error renders a nominally

optimal (controller, observer) pair unable to even stabilize the system. Recently, this fragility has appeared

in complex nonlinear settings as the so-called “sim-to-real” problem in reinforcement learning, which we

discuss in Chapter 3.

2.8.3 Robust control

The robust control paradigm mainly concerns scenarios in which we know that the true MDP ϕ belongs

to some small set Φ, for example some small neighborhood of uncertainty about a nominal system. We

seek a policy π : X 7→ U that is in some sense adequate for all ϕ ∈ Φ simultaneously. Traditionally

the sense of “adequate” is based on stabilization or system norms. Certain models of uncertainty in the

dynamics parameters are also equivalent to robustness against disturbance input signals (Dullerud and

Paganini, 2000). In the case of linear dynamical systems, robust control is a mathematically deep topic

with connections to functional analysis and convex optimization. Robust control is also highly focused

on partially observable settings. Robust methods often consider the full closed loop of state estimator and

controller, rather than studying each in isolation. Historically, robust control developed in response to

issues of the type observed by Doyle (1978), as mentioned previously.

2.8.4 Gain scheduling

Gain scheduling describes a technique in which some auxiliary information to identify ϕ is available. A

classic example is an airplane autopilot, where the altitude and airspeed strongly affect the ability of the

aerodynamic control surfaces to exert moments about the airplane’s rotational axes. The altitude and

38

airspeed can be directly measured with sensors. Therefore, a controller is designed in which the attitude

feedback gains depend on the altitude and airspeed sensor inputs (Åström and Wittenmark, 2013). The

term “gain” should be understood to mean “control policy” rather than anything more specific like gains

for a PID controller.

2.8.5 Adaptive control

In its broadest interpretation, the term adaptive controller refers to any controller that changes its behavior

based on the (possibly unknown) value of ϕwhile it is running. However, in common usage it is restricted

to cases where ϕ cannot be directly measured, thus excluding the gain-scheduling controllers. In particular,

the so-called self-tuning regulator directly attempts to estimate ϕ using system identification techniques

(§2.8.1), and then uses the estimate of ϕ to synthesize an optimal controller.

The self-tuning regulator paradigm is quite broad, but in practice it most commonly refers to cases

where:

• Structural knowledge of Φ can be exploited in the process of identifying ϕ. For example, in linear

dynamical systems, recursive least-squares estimation is especially efficient.

• Synthesizing an optimal policy and/or selecting an optimal action conditioned on the estimate of ϕ

can be done in real time.

In Chapter 3 of this dissertation, we present a method for synthesizing adaptive controllers in systems that

violate both of these assumptions.

2.8.6 Model-predictive control

Model-predictive control (MPC) is a class of controllers based on solving optimization problems quickly

in a real-time loop, rather than storing the control policy as some sort of closed-form function. MPC is

39

not a subset or disjoint of any of the categories listed above. Known-model, robust, gain-scheduled, and

adaptive versions of MPC all exist.

Suppose a deterministic discrete-time dynamics model x′ = f(x, u) is known and the current system

state is xt. Model-predictive control poses the optimization problem

minimize
ut,...,ut+K−1

K−1∑
τ=0

ℓτ (xt+τ , ut+τ) + ℓR(ut:t+K−1) (2.20)

subject to xt+τ+1 = f(xt+τ , ut+τ) ∀τ ∈ {0, . . . ,K − 1} (2.21)

ut+τ ∈ U ∀τ ∈ {0, . . . ,K − 1}, (2.22)

where each ℓτ is a task-determined loss (for example, tracking a goal trajectory in x), the term ℓR imposes

regularization (for example, penalizing large changes in consecutive values of u), and the horizon K is a

user-chosen hyperparameter. This is a simple MPC formulation. It is also possible to add state constraints

and more complex constraints on the set of admissible input sequences.

2.8.6.1 Receding horizon

Solving the optimization problem (2.20) yields a sequence of inputs u⋆t , . . . , u⋆t+K−1. Typically, only the

first input u⋆t is actually supplied to the system. Then the sensors and estimation system produce the actual

value of xt+1, which may not be equal to f(xt, u⋆t) due to modeling error and/or disturbances. We then

immediately solve another MPC problem starting from the true xt+1, which is used to decide the input

ut+1.

This pattern gives MPC a favorable structure for iterative optimization methods. If the optimization

algorithm requires an initial guess, then the guess

u⋆t+1, . . . , u
⋆
t+K−1, u

⋆
t+K−1

40

constructed by shifting the previous solution and duplicating the last input is often a nearly optimal for the

new optimization problem. Therefore, the optimization algorithm may require far fewer iterations than it

would require if starting from scratch, for example with all ui = 0.

2.8.6.2 Linear MPC

An important special case of MPC is linear dynamics (§2.9) with convex losses ℓt and convex regularization

ℓR where each Uτ is a convex set. The linear dynamics imply that xt+τ is an affine function of ut:t+τ−1.

Therefore, due to properties of convex functions (§ 2.4.1), the problem (2.20) is a convex optimization

problem. If the ℓt and ℓR are quadratic, then the problem is similar to a linear-quadratic regulator (§2.9.1.6),

butMPC can easily handle convex constraints on both actions and states, which cannot fit into the standard

LQR framework.

2.9 Linear dynamical systems and control

In this section we collect the background material on linear control theory needed to state our results. We

only consider time-invariant linear systems, where the coefficientmatrices of the recurrences or differential

equations are constant with respect to time. For brevity, we will take the term “linear system” and the

acronym “LTI system” to mean “linear time-invariant system”.

Linear dynamical systems are defined for both discrete and continuous time. We give a brief tour of

discrete-time linear control first. We will follow with an abbreviated discussion of continuous-time linear

control.

41

2.9.1 Discrete time

2.9.1.1 Autonomous system

A discrete-time deterministic linear dynamical system follows the recurrence

xt+1 = Axt (2.23)

for xt ∈ Rn, A ∈ Rn×n.

2.9.1.2 Stability

Perhaps the most important concept for linear dynamical systems is that of stability. For the purposes of

this overview, a discrete-time linear dynamical system is stable if

lim
t→∞
∥xt∥ = 0

for all initial states x0 under some norm ∥·∥. Far more general definitions of stability exist for broader

classes of systems (Hinrichsen and Pritchard, 2005). The state at time t is given by

xt = Atx0.

Recalling that ρ(A) = max{|λ| : λ ∈ Λ(A)}, the spectrum of A controls how quickly the states decay

towards zero:

Theorem 2.9.1. (Hinrichsen and Pritchard, 2005, Lemma 3.3.19) If ρ(A) < eω , then there exists M > 0,

depending on ω, such that ∥∥At∥∥
2,2
≤Meωt, t ∈ N.

42

If ρ(A) < 1 thenω < 0, so we see
∥∥At∥∥

2,2
goes to zero. This condition is necessary as well as sufficient:

if λ, ν is an eigenvalue/eigenvector pair of A and |λ| ≥ 1, then
∥∥Atν∥∥ =

∥∥λtν∥∥ = λt∥ν∥ ≠ 0. Therefore,

the discrete-time linear dynamical system (2.23) is stable if and only if ρ(A) < 1. A matrix with ρ(A) < 1

is called Schur (not to be confused with the well-known Schur complement of a block matrix).

2.9.1.3 Linear control systems

A linear control system has inputs in addition to state. A discrete-time linear control system follows the

recurrence

xt+1 = Axt +But + wt, (2.24)

where A ∈ Rn×n and B ∈ Rn×m are arbitrary matrices and wt ∈ Rn is a disturbance from the environ-

ment. In the deterministic case, we have wt = 0 for all t. In the stochastic case, we assume wt is sampled

i.i.d. in time according to some probability distribution. Often the distribution is Gaussian: wt ∼ N (0,Σx)

for some Σx ⪰ 0. If wt is allowed to be adversarial, sophisticated analysis beyond the scope of this disser-

tation is required.

2.9.1.4 Controllability

It is clear from the trivial example B = 0 that not all linear control systems can be driven to arbitrary

states. This is formalized by the notion of controllability.

Definition 2.9.2. The discrete-time linear control system (2.24) is controllable if, for any initial state

x0 ∈ Rn and goal state xg ∈ Rn, there exists H ∈ N and an input sequence (u0, . . . , uH−1) ∈ (Rm)H

such that xH = xg .

43

Controllability rank conditions Controllability of discrete-time systems can be reduced to simple

linear-algebraic questions about the matrices A and B. To see this, we now expand the expression for xH

and introduce the notation

xH = AHx0 +AH−1Bu0 + · · ·+BuH−1

≜ AHx0 +
[
AH−1B AH−2B · · · AB B

]
︸ ︷︷ ︸

Lc(H)

[
u⊤0 u⊤1 . . . u⊤H−2 uH−1

]⊤
︸ ︷︷ ︸

u0:H−1

.

From this, we can see that a system can be driven to an arbitrary goal xg inH timesteps if and only if the

system of linear equations

Lc(H)u0:H−1 = xg −AHx0

has a solution in the variables u0:H−1 ∈ RmH . Since xg is arbitrary, this is true for all xg and x0 if and

only if rank(Lc(H)) = n. It can be shown that if rank(Lc(n)) < n, then rank(Lc(H)) < n for allH > n,

so rank(Lc(n)) = n is a necessary and sufficient condition for controllability. The matrix Lc(n) is known

as the controllability matrix. For simplicity, we use the notation Lc = Lc(n).

Since the controllability matrix Lc is “wide” in general, it is sometimes convenient to instead consider

the matrix

Wc = LcL
⊤
c =

H−1∑
i=0

AiBB⊤(A⊤)i,

known as the controllability Gramian. Because rank(Wc) = rank(Lc), the condition rank(Wc) = n is also

necessary and sufficient for controllability. Note that these rank conditions are often numerically unstable

to compute in practice, and more appropriate alternative tests exist.

44

2.9.1.5 Stabilizing controllers

If we use a linear control policy ut = Kxt for someK ∈ Rm×n, then the system dynamics become

xt+1 = Axt +BKxt + wt.

In the case where wt = 0, the closed-loop system has the linear dynamics

xt+1 = (A+BK)xt.

Therefore, our results on stability of linear systems apply: If ρ+(A + BK) < 1, then our control pol-

icy stabilizes the system. It can be shown that such a stabilizing K exists if and only if the system is

controllable.

2.9.1.6 Linear quadratic regulator (LQR)

If we impose a quadratic cost on a linear dynamical system, we obtain the heavily-studied linear quadratic

regulator (LQR) problem setup. More specifically, we specify the cost

J =
H∑
t=0

c(xt, ut) ≜
H∑
t=0

x⊤t Qxt + u⊤t Rut, (2.25)

where Q ⪰ 0 and R ≻ 0. We sometimes use the notation ct = c(xt, ut). The horizon H may be either

finite or infinite. It is most natural to think of (2.25) as a penalty on being far from the zero state (first

term) and expending control energy (second term). To adapt LQR problems to the standard reward-based

MDP formulation, we set r(x, u) = −c(x, u).‡

‡Many results in reinforcement learning theory depend on boundedness of the reward. These results cannot be directly
applied to the LQR setting.

45

Optimal controller for LQR It can be shown (Lancaster and Rodman, 1995) that, for the infinite-

horizon case, the policy that minimizes Equation (2.25) is linear feedback of the form ut = Kxt, which

leads to quadratic total cost, i.e. J = x⊤0 Px0 for some P ⪰ 0, where P is the unique maximal positive

semidefinite solution to the discrete-time algebraic Riccati equation (DARE):

P = A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA+Q.

The optimal controller is then

K = −(R+B⊤PB)−1B⊤PA.

We emphasize that this controller is optimal over the class of all feedback controllers, not only the linear

feedback controllers.

2.9.1.7 Outputs and State Estimation

In many real-world dynamical systems it is not possible to measure every dimension of the state x. For

example, many small unmanned aircraft contain an inertial measurement unit (IMU) capable of measur-

ing acceleration and gravity forces and a global positioning system (GPS) receiver capable of measuring

position, but no instrument capable of measuring velocity. For linear systems, we consider a sensor or set

of sensors that measure some linear mapping of the state

y = Cx

for C ∈ Rp×n.

46

2.9.1.8 Observability

Analogous to the notion of controllability, a LTI system must satisfy certain conditions to ensure that it is

possible to estimate x from a history of inputs u and outputs y. For a generic (possibly nonlinear) discrete-

time system, we define observability by the condition that there exists H ∈ N and an input sequence

(u0, . . . , uH−1) such that it is possible to determine the initial state x0 from the known inputs and the

observations y0, . . . , yH .

For a LTI system, expanding the expressions for the observations yields

y0

y1

y3
...
yH

=

C

CA CB

CA2 CAB CB
...

... . . .

CAH−1 CAH−2B
. . . CB

x0

u0

u1
...

uH−1

=

C

CA

CA2

...
CAH−1

︸ ︷︷ ︸
Lo(H)

x0 + const.

(2.26)

Therefore, determining x0 reduces to solving a linear system. We see that for LTI systems, the feasibility

of determining x0 does not depend on the chosen inputs at all. (This is not true in general for nonlinear

systems.) Instead, it depends only on the coefficient matrix Lo(H). Although this system will generally

be overdetermined, in a perfectly modeled and noiseless system one can show that it will always have an

exact solution if and only if rank(H) = n for sufficiently large H . As in the controllability case, we can

show that must hold for some H ≤ n, so the matrix Lo ≜ Lo(n) is called the observability matrix.

47

2.9.1.9 Luenberger observer

Suppose we wish to design an online recursive estimator of the current state xt. Let x̂t denote the current

estimate of xt. A controller (outside our influence) supplies an input ut, and we observe yt = Cxt. It is

reasonable to impose that our update for x̂t+1 takes the form

x̂t+1 = Ax̂t +But + f(yt, x̂t).

Now we additionally impose that f(yt, x̂t) = L(yt − Cx̂t), that is, we update the estimate with a linear

function of the “residual” yt−Cx̂t, or the difference between the true measurement and the measurement

predicted by our estimate. We then examine the dynamics of the estimate error et = x̂t − xt:

et+1 = x̂t+1 − xt+1

= Ax̂t +But + L(yt − Cx̂t)− (Axt +But)

= A(x̂t − xt) + L(yt − Cx̂t)

= A(x̂t − xt) + L(Cxt − Cx̂t)

= (A+ LC)et.

(2.27)

The error dynamics are linear, so the stability condition for linear systems implies that, if ρ+(A+LC) < 1,

then et → 0 as t→∞. We note that ρ+(A+LC) = ρ+(A⊤+C⊤L⊤), matching exactly the formA+BK

we encounter when describing stabilizing controllers (§ 2.9.1.5). Therefore, linear estimator synthesis is

mathematically equivalent to linear control synthesis, with (A⊤, C⊤) playing the same role as (A,B).

2.9.1.10 Kalman filter

For control synthesis, we discussed both arbitrary stabilizing controllers and optimal controllers according

to the LQR cost criterion. Wemight ask if a similar notion of an optimal observer exists for state estimation.

48

The LQR quadratic cost expressed a tradeoff between regulating the state to zero and consuming energy

with control inputs. For state estimation, a quadratic cost would also capture the goal of driving the

estimate error to zero, but imposing a cost on the magnitude of the update L(yt − Cx̂t) does not have a

clear meaning.

It turns out that a useful “cost” will arise if we consider the stochastic case, where the dynamics are

given by

xt+1 = Axt +But + wt, yt = Cxt + vt,

where the dynamics noise wt and sensor noise vt are both zero-mean Gaussian random variables with

covariances Σx and Σy respectively.

Whereas the Luenberger observer only maintained an estimate x̂ of the state, in the stochastic case we

will maintain a Gaussian belief distribution:

xt ∼ N (x̂t, Pt).

From the properties of Gaussian distributions, after supplying the input ut, the belief distribution should

change according to

x̂′t = Ax̂t +But, P ′
t = APtA

⊤ +Σx.

This is known as the propagation step. The key question is how to update the belief distribution after

observing the output yt. This can be treated as a Bayesian inference problemwhere the current belief is the

prior, the measurement yt is the evidence, and the updated belief distribution is the posterior. Instead of the

common maximum a priori (MAP) update, we will seek an update that minimizes the trace of the updated

belief covariance. Deriving the update from probabilistic principles without making the assumption that

49

we update µwith a linear function of the measurement residual—as we did for the Luenberger observer—is

complex. It is beyond the scope of this dissertation to derive the update, but it takes the form

et = yt − Cx̂′t−1

St = CP ′
t−1C

⊤ +Σy

Kt = P ′
t−1C

⊤S−1
t

x̂t = x̂′t−1 +Ktet

Pt = (I −KtC)P
′
t−1,

where et is the measurement residual, St is the covariance of et according to the current belief distribution,

Kt is the so-called Kalman gain, and (x̂t, Pt) are the updated belief distribution parameters. This is called

the update step.

Although we have coupled the propagation and update steps notationally, they need not be coupled.

For instance, it is common in practice to have several propagation steps per update step.

2.9.2 Continuous time

All of the discrete-time definitions and theorems stated above have analogues for continuous-time systems.

We quickly review these analogues here. In the remainder of this dissertation we will never need to refer

to a discrete-time and continuous-time linear control system simultaneously, so we overload all notation

and rely on context to disambiguate.

2.9.2.1 Autonomous system

A continuous-time deterministic linear dynamical system follows the ordinary differential equation (ODE)

ẋ(t) = Ax(t) (2.28)

50

for t ∈ [0,∞), x(t) ∈ Rn, A ∈ Rn×n.

2.9.2.2 Stability

Again stability is defined by

lim
t→∞
∥x(t)∥ = 0

for all initial states x(0). The state at time t is given by

xt = etAx0,

where the matrix exponential is defined by the usual power series. For continuous-time LTI systems

ẋ = Ax, we have that

Theorem 2.9.3. (Hinrichsen and Pritchard, 2005, Lemma 3.3.19) If ρ+(A) < ω, then there exists M > 0

such that

lim
t→∞

∥∥etA∥∥
2,2
≤Meωt, t ∈ R≥0.

By a similar argument as the discrete case using an eigenvalue-eigenvector pair, the system ẋ = Ax

cannot be stable if ρ+(A) ≥ 0. Therefore, the continuous-time linear dynamical system (2.28) is stable if

and only if ρ+(A) < 0. A matrix with ρ+(A) < 0 is called Hurwitz.

2.9.2.3 Linear control systems

A continuous-time deterministic linear control system has the state and input spaces X = Rn, U = Rm,

and follows the ODE

ẋ(t) = Ax(t) +Bu(t), (2.29)

51

whereA ∈ Rn×n andB ∈ Rn×m are arbitrary matrices. (We will not consider continuous-time stochastic

systems in this dissertation.)

2.9.2.4 Controllability

The continuous-time linear control system (2.29) is controllable if, for any initial state x0 ∈ Rn, goal state

xg ∈ Rn, and time horizon T > 0, there exists a continuous function u(t) : [0, T) 7→ Rm for which the

system reaches state xg at time T .

It turns out that the exact same definition and rank condition of the controllability matrix as in the

discrete-time case (§2.9.1.4) imply controllability in the continuous case. We will not prove this here. The

controllability Gramian is defined differently, but it also has full-rank controllability condition.

2.9.2.5 Linear-quadratic regulator

The infinite-horizon continuous-time linear quadratic regulator (LQR) problem is specified by the cost

from a particular starting state x(0) ∈ Rn by

Jx(0) =

∫ ∞

0

[
x(t)⊤Qx(t) + u(t)⊤Ru(t)

]
dt, (2.30)

whereQ ⪰ 0 andR ≻ 0. Again, it can be shown (Lancaster and Rodman, 1995) that the optimal controller

is linear feedback of the form u(t) = Kx(t), which leads to the optimal total cost taking the quadratic

form Jx(0) = x(0)⊤Px(0), where P ⪰ 0 is the unique maximal positive semidefinite solution to the

continuous-time algebraic Riccati equation (CARE):

A⊤P + PA− PBR−1B⊤P +Q = 0. (2.31)

52

The optimal controller is then

K⋆ = −R−1B⊤P. (2.32)

2.9.3 Canonical forms

The Laplace transform, its discrete-time counterpart the z-transform, and transfer functions are an im-

portant tool for frequency-domain analysis of LTI systems. It is beyond the scope of this dissertation to

introduce them. In this section we briefly summarize one tool from frequency-domain analysis that we

will use to synthesize a state-space system with specified open-loop eigenvalues.

From the perspective of frequency-domain analysis, a single-input, single-output (SISO) control sys-

tem is completely characterized by the poles and zeros of its transfer function. However, the mapping

from state-space systems to transfer functions is many-to-one. Given a transfer function, one of several

particularly useful state-space realizations is the controllable canonical form or reachable canonical form

(Åström and Murray, 2010). If the transfer function is given by

b0s
n + b1s

n−1 + · · ·+ bn−1s+ bn
sn + a1sn−1 + · · ·+ an−1s+ an

,

then the controllable canonical form (CCF) realization is given by

A =

0 1

.
0 1

−an · · · −a2 −a1

 , B =

0
...
0

1

 , C =
[
bn − anb0, bn−1 − an−1b0, . . . , b1 − a1b0

]
.

To realize a state-space system for a particular set of open-loop eigenvalues λ1, . . . , λn, we compute the

denominator coefficients a1:n by expanding the characteristic polynomial (λ1 − x)(λ2 − x) · · · (λn − x).

53

2.9.4 Pole placement

Pole placement is a non-optimal control method. A pole placement algorithm P takes the dynamics

matrices A and B and a set of desired closed-loop eigenvalues λ1, . . . , λn ∈ C, and returns a matrix

K such that Λ(A + BK) = {λ1, . . . , λn}. If the system (A,B) is controllable, then such a K always

exists (Sontag, 2013). It is beyond the scope of this dissertation to discuss algorithms for computing pole

placement, but many exist.

2.10 Statistical learning

Statistical learning is an umbrella term for machine learning settings in which the learner observes a

complete dataset in one instant, as opposed to in some online or interactive protocol.

2.10.1 General statistical learning problem

In the most general statistical learning setting we have some abstract data space Z , an abstract function

class F , a loss function ℓ : F × Z 7→ R, and an unknown distribution D ∈ ∆(Z). Our ideal goal is to

solve the optimization problem

minimize
f∈F

L(f) ≜ E
z∼D

[ℓ(f, z)] . (2.33)

However, we are only given a data set of N items D = (z1, . . . , zN) ∼ DN , that is, each zi is sampled

i.i.d. from D. A natural learning algorithm to consider is solving the empirical risk minimization (ERM)

problem:

minimize
f∈F

N∑
i=1

ℓ(f, zi). (2.34)

54

Themathematically rich field of statistical learning theory tells us that for certain forms of ℓ, such as binary

classification and least-squares regression, a function class F is learnable if and only if it is learnable by

ERM. However, this is not true for the fully general setting (Shalev-Shwartz et al., 2010). In benign settings

the learning rate guarantee usually takes the form

sup
D∈∆(Z)

(
E

D∼DN
[L(fERM(D))]− inf

f∈F
L(f)

)
≤ O

(
1√
N

)

In other words, as the sample size goes to infinity, there is no distribution D that can “trick” the ERM

algorithm. The rate 1/
√
N is typical.

2.10.2 Supervised learning

A particularly important class of statistical learning problems is supervised learning, in which we have an

input space X , an output space Y ; we have Z = X × Y ; our function class is belongs to F ⊆ Y X ; and

our loss function takes the form

ℓ(f, (x, y)) = ℓs(f(x), y),

in which ℓs : Y × Y 7→ R is some kind of “comparison” function, often satisfying the properties of a

semimetric (§2.2.1). One common example is least-squares regression, where Y = Rd and we have

ℓ(f, (x, y)) = ∥f(x)− y∥22. (2.35)

Another common example classification, where Y = {−1,+1} (or any set of two distinct elements) and

we have

ℓ(f, (x, y)) = I[f(x)=y]. (2.36)

55

A fundamental difference between the least-squares loss (2.35) and the classification loss (2.36) is that only

the former is differentiable. The non-differentiability of the classification loss requires extra care in both

algorithm design and analysis.

2.10.3 Gradient-based optimization

In this work, we are only concerned with regression problems. The differentiability of the least-squares

loss (2.35) lends favorable structure to the problem. Now suppose our function class F is parameterized:

we have a parameter space Θ ⊆ Rn and a function F : Θ × X 7→ Y . We denote the partial application

with respect to θ by

fθ(x) = F (θ, x)

and let F = {fθ : θ ∈ Θ}. If ℓs is differentiable with respect to its first argument and F is differentiable

with respect to θ, then the resulting empirical risk minimization objective

LERM(θ) =
∑

(x,y)∈D

ℓs(fθ(x), y) (2.37)

is differentiable with respect to θ. This allows us to attack the supervised learning ERM problem with the

tools of continuous optimization. In particular, this problem has the following characteristics:

• When the parameter space Θ is high-dimensional, second order optimization algorithms are com-

putationally difficult (Nocedal and Wright, 2006). Second-order algorithms are those that require

solving a linear system of the form Hw = b for w, where H = ∇θ θLERM is the Hessian of LERM at

some point in Θ. The canonical example is applying Newton’s method to the system of equations

∇θLERM = 0.

• When the data set size N is large, computing the gradient∇θLERM or even simply evaluating LERM

can be computationally expensive.

56

• The parameter space is often unconstrained, i.e. Θ = Rn.

These characteristics favor the optimization method of stochastic gradient descent. In its simplest form,

stochastic gradient descent is based on the observation that

E
(x,y)∼Uniform(D)

[∇θℓs(fθ(x), y)] = ∇θLERM(θ),

which follows from linearity of expectation. This suggests we follow Algorithm 1.

Algorithm 1 Stochastic gradient descent for statistical learning
Require: Dataset D, learning rate η > 0, batch size 1 ≤ K ≪ N , initial guess θ
1: repeat
2: Sample (x1, y1), . . . , (xK , yK) ∼ Uniform(D)K .

3: Compute ∇̂θLERM =
1

K

K∑
i=1

∇θℓs(fθ(xi), yi).

4: Update θ ← θ − η∇̂θLERM.
5: until stopping criteria met.

In Algorithm 1, the batch sizeK balances the variance of the gradient estimate ∇̂θLERM against compu-

tational cost. In practice, a sizeK > 1 is almost always used to take advantage of parallel processing. The

uniform sample in line 2 of Algorithm 1 is sometimes replaced with another minibatch selection method.

For example, we might randomly permute the dataset and then sample each length-K chunk of the per-

mutation in order to improve memory locality. (One complete pass through the dataset in this manner is

sometimes called an epoch.) It is also common to apply the accelerated gradient descent methods discussed

in §2.4.4 to stochastic gradient descent.

2.11 Neural networks

The name Neural network is a broad descriptor for function approximation classes built up from recursive

composition of linear maps alternating with simple, usually elementwise, nonlinear maps. The latter is

often called a nonlinearity for short. The pair of a linear map followed by a nonlinearity is referred to as a

57

layer. This structure is loosely inspired by structures observed in animal brains. Usually the only learnable

parameters are those of the linear maps in each layer.

Neural networks have a long history in machine learning (Rosenblatt, 1958), but have recently grown

in prominence. Their growth has been influenced by several factors coming together:

• Graphics processing units (GPUs) growing from fixed-function devices into general-purpose mas-

sively parallel computers.

• Software libraries for reverse-mode automatic differentiation, also known as backpropagation, en-

abling loss gradient evaluation for arbitrarily complex functions.

• Special-purpose neural network architectures designed to exploit structural properties of high-

dimensional data such as images and sequences.

• Huge datasets of user-generated content from the Internet e.g. ImageNet (Deng et al., 2009).

Neural networks have become the de facto parametric nonlinear function class for many applications.

2.11.1 Neural network architectures

2.11.1.1 Nonlinearities

Common nonlinearities used in neural networks are:

• Sigmoid:

σ(x) =
1

1 + e−x

• Hyperbolic tangent:

tanh(x) =
ex − e−x

ex + e−x

• Rectified linear unit (ReLU):

relu(x) = max{x, 0}

58

−4 −3 −2 −1 0 1 2 3 4

−1

−0.5

0

0.5

1

σ(x)

tanh(x)

relu(x)

Figure 2.2: Typical nonlinearities used in neural networks.

In the remainder of this chapter, we will occasionally overload the notation σ(x) to denote an arbitrary ele-

mentwise nonlinearity instead of the sigmoid function specifically. This notational convention is common

in the literature on neural networks. Often the final layer lacks the nonlinearity. To avoid complicating

definitions, we therefore allow these generic nonlinearities to include the identity map as well.

2.11.2 Fully connected neural network

A fully connected neural network with n layers is a function of the form

f(x) = fn(fn−1(· · · f1(x) · · ·)),

where each layer fi takes the form

fi(y) = σi(Wiy + bi),

in which σi is a nonlinearity or an identity function,Wi is a “weight” matrix of appropriate size, and bi is

a “bias” vector of appropriate size. Using identity for the final output σn is common.

59

2.11.3 1D convolutional neural network

One-dimensional convolutional neural networks are used to process sequence data. Consider an input

space X = Rn×d, where n is the sequence length and d is the per-step dimensionality. A 1D convolution

of width k maps an input (x1, . . . , xn) ∈ X to a new sequence (y1, . . . , yn−k+1) according to

yi =W0xi +W1xi+1 + · · ·Wk−1xi+k−1 + b,

in which d′ is the output per-step dimensionality, eachWi is a d′ × d matrix, and b ∈ Rd′ is a bias vector.

Now consider a single scalar entry of a single vector in the output sequence, for example the first

entry of the vector y1. It is a linear combination of all kd scalar values of the input subsequence x1, . . . , xk.

Many common and important signal processing operations can be expressed as 1D convolutions, including

smoothing, derivative estimation, and finite impulse response filters. Note that a convolution of width k

reduces the output sequence length by k − 1.

A 1D convolutional neural network consists of more than one 1D convolution applied sequentially

with nonlinearities in between. After each layer, the “receptive field” of each entry in the sequence grows.

We then optimize all of the matrices W and the biases b simultaneously. We have left out many other

details such as strides and pooling, which can be found in any tutorial material on convolutional neural

networks.

60

2.11.4 Recurrent neural network

The term recurrent neural network (RNN) is used to describe a broad variety of differentiable function

classes suitable for representing sequence-to-sequence mappings. In contrast to 1D convolutional net-

works (§ 2.11.3), RNNs can represent sequence-to-sequence mappings with infinite impulse response. A

generic RNN is a discrete-time dynamical system of the form

xt+1 = f(xt, ut), ŷt = g(xt, ut)

where x is the internal state, u is the input, ŷ is the output and f and g are the dynamics and output func-

tions respectively. The RNN model is parameterized by some real vector θ. Both f and g are differentiable

with respect to their arguments and the parameter θ. The particular form of the functions f and g must

be carefully chosen to maximize expressiveness while preserving desirable properties for optimization.

It is important to emphasize that the RNN internal state x is an abstract quantity. For example, if

we optimize a RNN to evaluate arithmetic expressions, values of x in the learned RNN might contain

similar information to the stack in a parser. If we optimize a RNN to imitate the input-output mapping of a

Markovian physical system, xmight end up being an approximately invertible function of the true system

state. However, any such structure would arise implicitly via the optimization objective and would not be

enforced.

Depending on the application, the optimization objective for a RNNmay be a function of the full output

sequence y0:T or only the final output yT . The RNN parameter θ is typically optimized with stochastic

gradient descent (SGD) using backpropagation, so the gradient of the output loss is allowed to flow through

the recursive applications of f . This allows the RNN to learn dynamics where the effect of an input does

not appear until many time steps later. RNNs have achieved state-of-the-art results on many sequence

61

modeling tasks, even though the objective is nonconvex and SGDmay converge to suboptimal localminima

(Lipton, 2015).

2.11.4.1 Long short-term memory

The long short-term memory (LSTM) network is a particular kind of recurrent neural network—that is,

a particular form of the functions f and g—designed to have favorable properties for optimization with

gradient-based methods (Hochreiter and Schmidhuber, 1997). The LSTM is the de facto standard RNN

architecture due to these properties (Lipton, 2015). The LSTM partitions the internal state x into two

vectors h ∈ Rn and c ∈ Rn. The functional form is most clearly expressed using the intermediate values

i, f, q, p ∈ Rn as

i

f

q

p

 =

σ

σ

σ

tanh

 ◦
(
W

[
ht

ut

]
+ b

)
, ct+1 = f ⊙ ct + i⊙ p, ht+1 = q ⊙ tanh(ct+1), (2.38)

where σ denotes the sigmoid nonlinearity (§ 2.11.1.1), the symbol ⊙ denotes elementwise multipli-

cation, and ◦ denotes elementwise function composition. The learnable parameters are the matrix

W ∈ R4n×(n+m) and the vector b ∈ Rn+m, wherem denotes the dimensionality of u.

In some applications of LSTMs the state h is used directly as the output, i.e. g(h, c, u) = h. In other

settings, it is appropriate for g itself to be a learned mapping. For example, if the output space is very low-

dimensional, it may be useful to select a higher dimensionality of h and learn a projection y = Ph, where

P is a “wide” matrix. The input can also be pre-processed, replacing ut in (2.38) with a learned function of

ut. For example, if the input space is very high-dimensional (e.g. a one-hot encoding of English words), it

may be useful to use a projection here too.

It is also possible to form a multi-layer LSTM, in which subsequent layers take the internal states h of

previous layers as inputs.

62

Chapter 3

Reinforcement Learning for Universal Policies

In this chapter we work in the MDP family framework described in §2.6. We propose a method to give

reinforcement-learned policies the ability to adapt to unknown dynamics at test time. Our primary mo-

tivation is the simulation-reality gap in robotics, where a policy optimized in simulation performs poorly

in the real system that the simulator approximates. Adaptivity is also useful for deploying a pre-trained

policy into a wide set of real-world scenarios, for example if designing an autonomous driving system that

works on both sports cars and passenger vans.

Our method merges ideas from the self-tuning regulator paradigm in adaptive control (§ 2.8.5) with

the generality and representation learning ability of deep reinforcement learning. As discussed in §2.8.5,

traditional techniques for adaptive control generally exploit structure in the MDP family Φ to render the

processes of estimating ϕ and adapting the policy computationally efficient. Unfortunately, many systems

of interest in robotics do not admit analytical solutions for the system identification and policy synthesis

problems. In particular, with regard to policy synthesis there are numerous problems in robotics and AI

for which the only known satisfactory methods require hours of computation, such as some of the RL

successes listed in Chapter 1.

The work presented in this chapter was originally published in Preiss et al. (2018). The presentation has been substantially
revised for clarity, but the results have not.

63

For system identification, if the whole-family system dynamics P (·|x, u;ϕ) is only accessible through

a non-differentiable simulator, then the only computationally feasible method for online system identifi-

cation may be the function approximation approach (§2.8.1). By using deep neural networks for system

identification, we can take advantage of their representation learning ability. We learn an embedding

function that maps the system identification parameters in a family of MDPs Φ (see §2.6) into an abstract

embedding space. The embedding retains enough information to support policy specialization to particu-

lar MDPs withinΦwhile potentially being easier to identify from state-action trajectories. Our framework

also includes an observability-promoting reward that encourages the policy to balance the task goal with

behavior that aids system identification.

Our simulation experiments demonstrate desirable properties of the learned embedding in a toy ex-

ample, but show only a modest improvement in ultimate optimality of the multi-system policy in a more

complex example. The experimental results raise fundamental questions about reinforcement learning and

multi-system control that motivate our theoretical work in subsequent chapters.

3.1 Related work

Although policies trained with reinforcement learning (RL) can achieve state-of-the-art performance on

some tasks, they are often brittle and fail to generalize beyond the training environment, even when the

differences are small (Zhang et al., 2018). An important instance of this problem is sim-to-real transfer for

robotics. RL algorithms can often learn policies that exploit bugs in physics simulators, or vision-based

policies that work with synthetic rendered inputs but not with real images.

A natural first step to deal with such brittleness is to add randomization to the simulator. In the the

domain randomization approach, we optimize the objective

maximize
π∈Π

E
ϕ∼ζ

Jϕ(π), (3.1)

64

where Π ⊆ ∆(U)X is a policy class, ζ is some distribution over Φ, and Jϕ is the RL objective for ϕ

(encapsulating the horizon and discount). Domain randomization during training can improve robustness

(Antonova et al., 2017; Zhu et al., 2018; van Baar et al., 2019; Sadeghi and Levine, 2017; Tobin et al., 2017),

but it is limited by its assumption that a single policy can perform adequately in all possible test domains.

In this sense, domain randomization is similar in spirit to robust control.

Other deep learning techniques in the robustness spirit include merging ensembles of policies

(Parisotto et al., 2016; Teh et al., 2017), adversarial perturbations of state or observations (Pinto et al.,

2017; Huang et al., 2017), and learning robust feature spaces (Higgins et al., 2017; Bousmalis et al., 2016).

Fine-tuning (Rusu et al., 2017) and (some) meta-learning approaches (Finn et al., 2017) assume there

will be an opportunity to collect data from the test domain and update the policy. In this work, we seek a

policy that specializes to a novel test environment rapidly, without using significant data or computational

effort at test time. Recurrent neural network policies are also capable of fast adaptation to unobserved

quantities but require more complex reinforcement learning algorithms (e.g. Wierstra et al., 2007). Duan

et al. (2016b) specifically evaluate RNN policies as a tool for adapting to different tasks, as opposed to more

generic POMDP settings. Another possibility is augmenting the MDP states with “memory” and adding

actions so that the policy can write to the memory states (Peshkin et al., 1999).

In our setting, we assume that dynamics parameters are known during training but unknown under

test. Under the same assumptions, the method most similar to our is that of Yu et al. (2017), who train

a policy in simulation that observes ϕ and a neural network to estimate ϕ from a state-action trajectory.

Our method builds upon this by adding two contributions: 1) a learned embedding space that represents

the system dynamics parameters in a form that is both useful and easy to identify, and 2) an observability

reward that encourages the agent to maximize identification accuracy.

65

3.2 Problem statement

We consider reinforcement learning in a family of Markov decision processes using the notation defined

in § 2.6, with variations only in the transition dynamics P . We assume that the system space Φ can be

parameterized by a real vector and identify Φ with the parameter, i.e. we assume Φ ⊆ Rdϕ . We present

our results for the case of finite-horizonMDPswith horizonH , but ourmethod is also applicable to infinite-

horizon MDPs.

Our learning protocol is separated into training and testing phases. During training, we have access

to a simulator for each ϕ ∈ Φ. During testing, the environment selects a particular ϕ ∈ Φ, but does not

reveal its choice to us. Our goal is to take near-optimal actions in the MDP ϕ despite not knowing the

value of ϕ.

In cases where Φ is large and unstructured, for example the set of all linear dynamical systems or

all finite MDPs, the testing phase of our learning protocol has no meaningful difference from the basic

RL problem (§2.7). At the other extreme, if Φ represents a small neighborhood of uncertainty around a

single nominal MDP, then we are in the robust control regime (§2.8.3) and it is reasonable to seek a blind

policy π : X 7→ U that is nearly optimal for all ϕ ∈ Φ, for example by using the domain randomization

approach (3.1). We consider the cases in between, where Φ is large but still highly structured. In such

settings, no blind policy can perform adequately over the entirety of Φ. However, it is still possible to gain

much sample efficiency at test time compared a generic RL algorithm by doing some kind of meta-learning

or other preparation during the training phase.

3.3 Method

A natural approach in this protocol is to learn a policy π : X×Φ 7→ ∆(U) alongside a system identification

function idϕ : X<N × U<N 7→ Φ that maps the history of past states and actions to an estimate of ϕ. At

66

Training Time:

Simulation
Environment

Policy
π

Embedder e

Trajectory τ

xt−1, ut−1
xt−1, ut−1
xt−1, ut−1
xt−1, ut−1
xt−1, ut−1 Estimator idε

Supervised
Learning Loss

states

actions

SysID

embeddings

estimated
embeddings

Testing Time:

Test
Environment

Policy
π

×

Trajectory τ

xt−1, ut−1
xt−1, ut−1
xt−1, ut−1
xt−1, ut−1
xt−1, ut−1 Estimator idε

states

actions

SysID estimated
embeddings

Figure 3.1: Overview of our method. At training time, correct dynamics parameters are available from the
simulator. A mapping e from parameters to an abstract embedding space is learned, along with a module
idε to identify the embedding value from a state-action trajectory τ . The policy is rewarded for behavior
that improves system identification accuracy. At testing time, the true dynamics parameters are no longer
known, and the estimated embeddings are input directly to the policy.

test time, we act with the policy ut ∼ π
(
xt, idϕ(x0:t, u0:t−1)

)
. This method was explored by Yu et al.

(2017), in which the authors refer to π as a universal policy, and refer to their method as UP-OSI (universal

policy with online system identification).

Our method addresses several hypothetical failure modes of UP-OSI. First, UP-OSI requires estimating

every dimension of ϕ, even though some may be redundant, difficult to estimate, or unneeded to maximize

reward. Second, behavior that maximizes reward in training may be suboptimal for system identification

at test time. It is preferable to learn a behavior that balances the primary reward with a secondary goal of

making the system identification task as easy as possible. For example, some adaptive control methods for

linear systems require a persistently exciting input, but inputs from a stabilizing linear feedback controller

may fail to be persistently exciting (§2.8.1.1).

67

We address the first concern by introducing a learned abstract representation E ⊆ RdE of the dynam-

ics parameters. (The dimensionality dE is a user-chosen hyperparameter.) During training, we learn an

embedding function e : Φ 7→ E and a universal policy πε : X × E 7→ ∆(U) conditioned on an embed-

ding value instead of the environment parameter ϕ. We simultaneously learn an identification function

idε : X<N × U<N 7→ E to estimate the embedding value from the past states and actions. Then, at test

time, we act with the policy ut ∼ πε
(
xt, idε(x0:t, u0:t−1)

)
.

We address the second concern by augmenting the main RL reward with a term penalizing estimation

error of idε. This rewards behavior that makes estimating ε easier. Our method is illustrated in Figure 3.1.

3.3.1 Learning algorithms

Simple case: policy and identification decoupled We learn the embedding function e and the uni-

versal policy πε in an end-to-end fashion using a standard reinforcement learning algorithm. We reduce

the universal policy optimization problem to a standard RL problem. First, we choose a distribution over

environment parameters ζ ∈ ∆(Φ). For example, if Φ is bounded, we might choose ζ to be uniform. We

then create an augmented MDP with the state space X ′ = X ×Φ, the dynamics P ′((x, ϕ), u) = Pϕ(x, u),

and the initial state following the probability density function ρ′((x, ϕ)) = ρ(x)ζ(ϕ). Then, performing

RL on our augmented MDP is equivalent to optimizing the objective

maximize
πε, e

JR(πε, e) ≜ E
ϕ∼ζ

[
E
H−1∑
t=0

r(xt, ut)

]
, (3.2)

where the inner expectation is with respect to x0 ∼ ρ, ut ∼ πε(xt, e(ϕ)), xt+1 ∼ Pϕ(xt, ut). To opti-

mize the RL objective (3.2), we can use any “off-the-shelf” reinforcement learning algorithm that supports

continuous state and action spaces and can optimize the composition of e and πε directly.

68

After RL is complete, we optimize the system identification function idε according to the objective

minimize
idε

Jid(idε;πε, e) ≜ E
ϕ∼ζ

[
E
H−1∑
t=0

∥idε(x0:t, u0:t−1)− e(ϕ)∥ 22

]
, (3.3)

where the inner expectation is as in (3.2) with respect to the optimal policy obtained from RL. Because this

expectation depends on the action distributions of πε, the optimal system identification function idε can

be different for different policies.

Complex case: observability reward As discussed in §3.3, the optimal policy for the objective (3.2)

does not necessarily take actions that make system identification feasible. We can address this by adding

a term to the RL objective that penalizes system identification error. Specifically, for a fixed system iden-

tification function idε, we modify the RL objective to

maximize
πε, e

JO(πε, e; idε) ≜ E
ϕ∼ζ

[
E
H−1∑
t=0

r(xt, ut)− α∥idε(x0:t, u0:t−1)− e(ϕ)∥

]
, (3.4)

where α > 0 is a user-chosen weight. We refer to the added term as the observability reward. Note that

the value of the observability reward at time t is completely determined by the actions taken before time t.

This is no different from the “credit assignment problem” already present in reinforcement learning, and

is accounted for by the RL algorithm.

Our algorithm alternates between optimizing the policy and the system identification estimator. In

an idealized setting, we would follow Algorithm 2. Note that on line 1 of Algorithm 2, we initialize the

policy and embedding function without the observability reward. It would also be possible to initialize

the system identification function first using some default policy, for example a policy that takes purely

random actions independent of state and embedding value. However, we did not explore this possibility

in our work.

69

Algorithm 2 Idealized algorithm

1: π(0)ε , e
(0) ← argmax JR(πε, e) ▷ initialize policy for task reward only

2: for i ∈ 1, . . . , N do
3: id

(i)
ε ← argmin Jid(idε;π

(i−1)
ε , e

(i−1)
) ▷ update sysID estimator for current policy

4: π
(i)
ε , e

(i) ← argmax JO(πε, e; id
(i)
ε) ▷ update policy for current sysID estimator

5: end for

We note a possible failure mode of this approach: If the observability reward weighting α is chosen to

be too large, its contribution could dominate the RL reward. As α → ∞, one optimal solution would be

for e and idε to both be constant functions. The hyperparameter α must be selected to ensure this does

not happen.

In practice, it is computationally expensive to solve the optimization problems within each iteration

of Algorithm 2. In our experiments, we instead alternate between one iteration of RL for (πε, e) followed

by a one iteration of gradient descent for supervised learning of idε, as shown in Algorithm 3.

Algorithm 3 Practical algorithm
Initialize πε, e, idε randomly
1: for i ∈ 1, . . . , N do
2: sample ϕ1, . . . , ϕB i.i.d. from ζ
3: collect trajectories τ1, . . . , τB from πε for each ϕi
4: perform one iteration of RL to optimize πε, e for JO
5: perform one iteration of SGD to optimize idε for Jid on the dataset {τ i}Bi=1

6: end for

3.3.2 Implementation details

Function classes In our experiments, the universal policy πε is parameterized as a fully-connected neu-

ral network with 2 hidden layers of 128 units each, using ReLU nonlinearities (§2.11.1.1). The embedding

function e is also a fully-connected neural network, containing one hidden layer of 128 units.

We employ a one-dimensional convolutional architecture for the identifier function idε, composed of

three 1D-convolutional layers, each with 64 filters of width 3 and ReLU activation, followed by a single

fully connected layer with 128 units, and a linear output layer. (See § 2.11.3 for more information on

70

1D-convolutional neural networks.) Convolutions in time match the intuition that differentiation of the

state and action trajectories is often required to identify the underlying dynamics parameters in real-world

physical systems. If the discrete-time dynamics are derived from integrating continuous-time dynamics,

then the finite-difference operations used to approximately recover derivatives are naturally represented

as convolutions in the time dimension. For example, if x1, x2, . . . is a sampling of a continuous signal

with one unit of time per step, then convolution in time by the kernel [−1, 1] approximates the signal’s

derivative, and the kernel [1,−2, 1] approximates its second derivative.

Although we defined idε in § 3.3 as a function of all states and actions since the episode beginning,

the composition of convolutions with a fully-connected layer (as opposed to e.g. convolution followed by

taking the mean over time) implies a fixed-length window of state-action inputs. Therefore, we choose a

window length K and supply only xt−K:t, ut−K:t−1 to idε. For steps when t < K , we define the initial

states and actions in the window as zero vectors. In our experimentsK = 16.

RL algorithm For all experiments, we use the entropy-regularized Soft Actor-Critic (SAC) reinforce-

ment learning algorithm (Haarnoja et al., 2018). SAC is an off-policy algorithm where a stochastic policy

is trained only with TD-learned value function estimates. We observed significantly higher rewards using

SAC compared to the on-policy, Monte Carlo policy gradient algorithm PPO (Schulman et al., 2017). We

conjecture that the use of TD-learning and a replay buffer is especially helpful in our scenario compared to

single-environment training, since the replay buffer helps prevent “forgetting” about areas of the dynamics

distribution pΦ that have not been sampled recently. The replay buffer is used for RL but not to learn the

system identification function idϕ, to ensure that the (nonstationary) training distribution of state-action

trajectories for idϕ reflects the same policy behavior that will be observed at test time.

The value function estimators used by SAC are parameterized by fully-connected networks of identical

structure to the policy. For blind policies, the value function networks are conditioned only on the observed

state x ∈ X to emulate domain randomization approaches. For plain policies, they are conditioned on both

71

x and ϕ ∈ Φ to emulate the setup of Yu et al. (2017). For ours policies, they are conditioned on x, ϕ, and

ε ∈ E . Although the embedding function e could theoretically be optimized via the least-squares value

learning loss of SAC, we optimize it only via the policy gradient.

3.4 Experiments

In this section, we show desirable properties of our learned embedding space E using a toy example and

compare the performance of our architecture against several baselines on a more complicated benchmark

problem in robotic locomotion.

3.4.1 Point-Mass Environment

This low-dimensional system allows us to visualize learned embeddings. A 2D point mass with position

p ∈ R2 follows dynamics

p̈ = gu− dṗ,

where the action u ∈ [−1, 1]2 is a bounded force input, the parameter g ∈ R ̸=0 is a gain factor, and the

parameter d ∈ R≥0 is a damping factor. The goal is to push the point towards the origin, specified by

reward r = −∥p∥2.

To convert these second-order continuous-time dynamics into a discrete-time dynamical system suit-

able for standard reinforcement learning algorithms, we apply the state space transformation

x(t) =

[
p(t)

v(t)

]
, ẋ(t) =

[
v(t)

gu(t)− dv(t)

]
,

72

4 3 2 1 0 1 2 3 4
gain

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

em
be

d[
0]

4 3 2 1 0 1 2 3 4
gain

0.5

0.0

0.5

1.0

1.5

2.0

2.5

em
be

d[
1]

Figure 3.2: Point-mass example system: Learnedmapping e from gain g to one dimension of the embedding
space E .

−2 −1 0 1 2

gain (actual)

−2

−1

0

1

2

es
ti
m

at
ed

plain

−2 −1 0 1 2

embedding (actual)

−2

−1

0

1

2
es

ti
m

at
ed

embed

Figure 3.3: Point-mass example system: Comparison of actual vs. estimated gain g (left) and one dimension
of the embedding ε (right). Embedding separates parameters requiring disjoint behavior into clusters.

where v ∈ R2 is the velocity, and discretize with simple forward Euler integration over the time interval

∆t to yield the discrete-time system

xt =

[
pt

vt

]
, xt+1 = xt +

[
∆tvt

∆t(gut − dvt)

]
.

The dynamics parameter ϕ is the gain factor g ∈ ±[0.175, 1.75]. Due to the unknown sign of g, a policy

that ignores the value of ϕ cannot possibly perform well in this environment.

73

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

gain

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

m
as

s

embed[0]

embed[1]

Figure 3.4: Point-mass system with redundant mass parameter: Multidimensional visualization of learned
embedding. Axes represent the gain and mass parameters g,m. Colors represent both dimensions of the
learned embedding ε: one dimension controls the amount of orange; other dimension controls the amount
of blue. Note that lines of constant gain/mass ratio are mapped to approximately the same color. Plot
restricted to positive gain domain for clarity.

For our experiments, we select the embedding dimension dE = 2, even though the true spaceΦ is only

one-dimensional, to emphasize that making ε higher-dimensional than necessary is not detrimental. We

show results in Figures 3.2 to 3.4.

In Figure 3.2, we show one output dimension of the learned embedding function e : Φ 7→ E after

applying our method to the point-mass system. We observe that the embedding “squashes” all positive

gains to approximately the same value, and does the same for negative gains.

In Figure 3.3, we evaluate the accuracy of the learned system identification functions in both our

method and in the plain method. The scatter plots compare the ground truth values of ϕ (resp. ε) against

the values estimated by idϕ (resp. idε). We again see the effect of the “squashing” done by idε, resulting in

two easily distinguished clusters.

To demonstrate how the learned embedding can eliminate redundant parameters in Φ, we construct

a version of the point-mass environment with a mass parameter m > 0 alongside the gain g, such that

p̈ = (g/m)u. The dynamics of all combinations with the same ratio g/m are indistinguishable. This

implies that in the plain method, the system identification loss will always be large.

74

In Figure 3.4, we visualize both dimensions of our learned embedding for this version of the point-mass

environment. Our framework learns an embedding where all (g,m) combinations with similar g/m ratios

map to a similar embedding value.

3.4.2 Half-Cheetah environment

Figure 3.5: Variations of Half-Cheetah environment produced by randomization of kinematic and dynamic
properties.

As a more complex benchmark task, we demonstrate results on the Half-Cheetah planar locomotion

environment from the OpenAI Gym (Brockman et al., 2016). We randomize the length of the torso and the

lengths of the three segments in each leg. For each of the six rotational joints, we randomize the beginning

and end of the angular range, the gear ratio of the actuator, a velocity-proportional damping constant, and

the stiffness of a virtual spring pulling the joint towards a specified resting angle. In total, 37 parameters

are randomized.

For joint ranges, limits on either side are shifted by ω ∼ Uniform(−0.3, 0.3) radians from nominal.

All other parameters must take nonnegative values, and some should not be too close to zero. To en-

sure this, we multiply the nominal value of those parameters by a random nonnegative ratio βp where

p ∼ Uniform(−1, 1). The parameter β > 1 controls the amount of randomness. For example, if β = 2,

then 1/2 ≤ βp ≤ 2. In our experiments, β = 1.75, which was the largest value we could use without

generating too many overly difficult configurations. Some examples of the randomized half-cheetahs are

shown in Figure 3.5.

75

blind

0

500

1000

1500

2000

ours plain

0

500

1000

1500

2000

train test

Figure 3.6: Box plot of training and test reward for blind, ours, and plain policies in randomized half-
cheetah environment. Distributions are over the random sample of environments. Whiskers indicate full
extent (min/max) of rewards.

Due to the architecture of the MuJoCo physics simulator used in this environment (Todorov et al.,

2012), it is not practical to sample new random dynamics parameters ϕ for each training iteration. Instead,

we construct a “universe” of 256 models initially, and sample a new “universe” at test time.

We select that the embedding space E is 8-dimensional. We did not observe significant sensitivity to

this choice.

Results are shown in Figure 3.6. Variance of rewards is large due to the randomized dynamics. (For

example, a random variant with strong damping will require more control effort to reach the same speed.)

The blind policy fails to achieve high rewards because it is unable to specialize its behavior to the dy-

namics parameters. Naturally, it also does not suffer a performance loss on the test set. The plain policy,

conditioned on ϕ instead of ε, achieves similar training rewards but suffers negative rewards in some test

environments, while ours does not.

In current experiments, we have not yet observed a significant effect of our observability reward term,

so we do not include its results in Figure 3.6.

76

3.5 Discussion

Our experiments raise several questions. First, we observed that our learned embedding space e : Φ 7→ E

offered only modest improvement over directly identifying ϕ. This may be because identifying ϕ for the

half-cheetah environment is not difficult, despite its high dimensionality. Also, we hypothesized that our

embedding would be useful for cases where two ϕ, ϕ′ ∈ Φ are indistinguishable, but if they are indistin-

guishable, then the adaptive policy does not need to differentiate them. Therefore, if the system identifi-

cation module only outputs ϕ, the least-squares system identification loss will be nonzero but the policy

reward will still be high.

Second, we did not observe any effect of adding our observability reward. The simplest explanation is

that optimal behavior for the task reward already yields good observability as a side effect.

Third, a result we observed during our experiments that we did not report in § 3.4 because it was

tangential to the main work: a performance gap between the universal policy and the average performance

of individual “expert” policies trained for a single ϕ ∈ Φ. We investigate this phenomenon in a simplified

setting in §3.6.

77

3.6 Simplified experiment: Universal policy versus experts

In this section we investigate the behavior of RL with a “universal policy” independent of any concern

about system identification. We eliminate the testing phase from our protocol and focus purely on the

performance during the training phase. Without the need to identify ϕ in the training phase, the system

embedding and observability reward proposed in §3.3 are no longer useful, so we eliminate them from our

experiments. Therefore, we are working in the same setup as Yu et al. (2017).

We compare the performance of a multi-system “universal policy” neural network against the aggre-

gate performance of a collection of single-system policies. Recalling that ζ is some distribution over Φ, we

sample a fixed set of N systems

Φs = ϕ1, . . . , ϕn ∼ ζN .

For each ϕi ∈ Φs, we train an “expert” policy πi to optimize the RL objective for ϕi. We terminate the

RL algorithm for πi after a fixed number T of interactions with the MDP ϕi. We also train a multi-system

policy πmulti, without using any embedding or observability reward, in the augmented MDP as described

in § 3.3.1 with the system distribution ζ = Uniform(Φs). Note that this distribution is uniform over

the sample, not over all of Φ. We train πmulti for NT interactions with the augmented MDP. Therefore,

the universal policy πmulti and the collection of expert policies each consume the same total amount of

environment interactions in aggregate.

As a simple test environment, we use a linearization of the “planar quadrotor” (Singh et al., 2021).

The system is linearized about its hover state. We randomize the mass and moment of inertia parameters,

sampling from a log-uniform distribution over two (decimal) orders of magnitude. In this system, X = R6,

U = R2, and Φ ⊆ R2. The reward is negative LQR cost (2.25) with Q and R identity matrices. We

train all policies using the implementation of the PPO algorithm (Schulman et al., 2017) from the popular

78

reinforcement learning library stable-baselines3 (Raffin et al., 2021). We leave all hyperparameters of

the policy class and RL algorithm at their default value.

A goal of multi-system learning is to leverage shared structure between systems to improve sample

efficiency. If a multi-system learning method is able to do this, then we expect to see that for some values

of T ,

1

N

N∑
i=1

Jϕi(πi) ≤
1

N

N∑
i=1

Jϕi(πmulti),

where Jϕi(π) denotes the RL objective for system ϕi.

We visualize results for this experiment in Figure 3.7. To account for the different optimal policy

costs for different systems, we plot the ratio of the learned policy’s cost to the cost of the LQR-optimal

linear controller for the infinite-horizon version of the problem. (Note that this normalization is performed

only for plotting, not for the RL reward.) Learning curves for each random planar quadrotor are plotted

individually. The training steps on the horizontal axis are per-system, so each step corresponds to an

equivalent amount of training time for both the multi-system policy and the aggregated single-system

policies.

We observe that the multi-system policy does initially achieve lower LQR cost for most systems. How-

ever, as training progresses, in most of the systems the “expert” policies eventually become more optimal

than the multi-system policy. This suggests that the multi-system setup is able to exploit shared structure

to some degree, but there is also some phenomenon inhibiting the multi-system setup from reaching full

optimality. It also appears that in the multi-system setting, PPO converged by around 1million steps (100k

steps per system) but became unstable after around 2 million steps (200k steps per system).

Discussion We emphasize that this experiment is not a strong negative result against the “universal pol-

icy” architecture. It only shows that applying the simplest possible approach is not enough. Researchers

79

have proposed more sophisticated approaches for RL for continuous system spaces (for example, Kalash-

nikov et al., 2021). We include this experiment only as a motivating example for our subsequent theoretical

inquiry into reinforcement learning and multi-system control.

There are two broad categories of explanations for this result. One possible explanation is that the

augmented MDP is somehow unfavorable for the RL algorithm. Another possible explanation is the policy

class. It might be hard to represent a good multi-system policy with a neural network. These two possibili-

ties motivated us to seek a better understanding of RL algorithms and multi-system control at a theoretical

level, which we explore in Chapter 5 and Chapter 6 respectively.

80

1

2

3

4

su
bo

pt
im

al
ity

ra
tio

seed = 1 seed = 2 seed = 3

1

2

3

4

su
bo

pt
im

al
ity

ra
tio

seed = 4 seed = 5 seed = 6

0 100k 200k 300k
steps

1

2

3

4

su
bo

pt
im

al
ity

ra
tio

seed = 7

0 100k 200k 300k
steps

seed = 8

0 100k 200k 300k
steps

seed = 9

expert multi

Figure 3.7: Learning curves for multi-system “universal policy” and single-system “expert” policies for nine
random linearized planar quadrotor systems.

81

Chapter 4

Deformable Manipulation using Learned Models

In this chapter we investigate the middle ground between model-free reinforcement learning and tra-

ditional control methods based on physics-derived models. Our interest is motivated by the following

observation: in MDPs for robotics the reward function is often known, or even designed by an engineer.

The main source of complexity in many tasks is the environment dynamics. For example, in the half-

cheetah simulated locomotion environment discussed in Chapter 3, the reward is simply forward velocity,

which is one of the system states. Therefore, we consider using learning to account for complex dynamics

but traditional estimation and control techniques to act optimally within the learned model. We consider

the test case of deformable object manipulation, where first-principle physical models are usually high-

dimensional.

In the present work, we assume that an engineer can design an experiment that sufficiently explores

the state space. After collecting a dataset of trajectories from the real system, we train a recurrent neural

network (RNN) to approximate its input-output behavior with a latent state-space model. Unlike finite

element models and other physics-derived models of deformable objects, the RNN internal state is low-

dimensional enough to enable realtime nonlinear control methods. We demonstrate a closed-loop control

scheme with the RNN model using a standard nonlinear state observer and model-predictive controller.

The work presented in this chapter was originally published in Preiss et al. (2022). It is reproduced here with minimal
changes.

82

We apply our method to track a highly dynamic trajectory with a point on the deformable object, in

real time and on real hardware. Our experiments show that the RNN model captures the true system’s

frequency response and can be used to track trajectories outside the training distribution. In an ablation

study, we find that the full method improves tracking accuracy compared to an open-loop version without

the state observer.

4.1 Introduction and Related Work

Manipulating deformable objects represents a challenging area of robotics. In contrast to typical objects

consisting of a single rigid body, deformable objects often admit limited control authority and have dy-

namics that are difficult to predict. At the same time, many objects of human interest are deformable. Safe,

reliable robotic manipulation of these objects is critical for capable general-purpose robots (Arriola-Rios

et al., 2020; Zhu et al., 2021).

As with many manipulation problems in robotics, there are multiple ways to model the dynamical

behavior of the manipulated object. Broadly speaking, there are two classes of models: Fully data-driven

methods based on an expressive function class with many parameters, and analytical methods based on a

physical model with fewer parameters that can be identified from data.

Physics-based models of deformable objects have been studied extensively in science and engineering

contexts, and many constitutive models have been described for various materials (Holzapfel, 2002). These

models are continuous in space and time, and simulation on computer hardware requires a discretization

strategy. Finite element methods (FEM) have been used for decades to solve continuum mechanics prob-

lems (Wriggers, 2008) and have shown promise for robotic control. Recent work with FEM modeling

addresses dynamic control of deformable objects and soft robots with offline trajectory optimization (Zim-

mermann et al., 2021; Bern et al., 2019; Duenser et al., 2018; Li et al., 2021; Qiao et al., 2020; Heiden et al.,

2021a). FEM is appealing as it admits extensive theoretical analysis (Barbič and Popović, 2008; Thieffry

83

et al., 2018). For real-world problems, it is possible to estimate the parameters of FEM meshes in a prin-

cipled way from exteroceptive sensors common in robotics (Hahn et al., 2019). Alternative discretizations

include the material point method (Sulsky et al., 1994; Hu et al., 2019), (extended) position based dynamics

(Macklin et al., 2016), andmeshless shapematching (Müller et al., 2005). Additionally, task-specific reduced

states can be formulated, which accelerate control, perception and planning (Mcconachie and Berenson,

2018; McConachie et al., 2020).

Deformable objects can be complex to model, and for objects with resonant dynamics, seemingly mi-

nor errors in model assumptions or material parameter estimates can cause large deviations in dynamic

behavior over time (Bern et al., 2020). For these reasons, purely data-driven methods are an appealing

alternative to physics-based models. Machine learning methods have been explored in deformable ma-

nipulation (Mirza, 2020), for purely kinematic trajectory tracking (Bern et al., 2020), for cable-driven soft

robot actuators (Bruder et al., 2019), for control of pneumatic deformable mechanisms (Gillespie et al.,

2018), and for structures actuated by shape-memory alloys (Sabelhaus and Majidi, 2021). For scenarios

where controllers can continuously interact with their environment to improve, model-based reinforce-

ment learning has been proposed (Thuruthel et al., 2019). Other data-driven approaches studied in soft

robot control include proper orthogonal decompositions (Tonkens et al., 2021).

In this work, we propose a data-driven method for modeling and trajectory-tracking control of a de-

formable object. Tracking fast trajectories serves as a benchmark for a method’s ability to predict and

account for dynamics in the manipulated object. Our method models the dynamics with a long short-

term memory (LSTM) recurrent neural network (RNN) (Hochreiter and Schmidhuber, 1997; Lipton, 2015),

trained in a standard sequence modeling setup using input-output trajectory data from a real physical

system. The internal state of the learned RNN is not physically meaningful, but the RNN still forms a

discrete-time dynamical system that is compatible with standard methods in state-space nonlinear control.

84

We therefore apply model-predictive control (Allgöwer and Zheng, 2012) and extended Kalman filtering

methods (Kalman, 1960) to track the trajectory using the RNN model.

We implement our method to run online with a real robot, and use it to “draw in the air” along a fast

trajectory with the free end of a pool noodle (long foam cylinder) held by the robot arm. To measure how

well non-instantaneous dynamics are captured, we compare frequency response plots of the true system

and the RNN model. To verify that a nonlinear observer helps compensate for model errors, we perform

an ablation study comparing our method to an open-loop variant where the RNN model is assumed to be

perfect. We find that the full closed-loop method reduces trajectory tracking error.

RNNs have a long history within the broader field of nonlinear state-space system identification with

partial observability (Nelles, 2001). Such models can be used as an intermediate tool for learning a control

policy, e.g. in model-based reinforcement learning (Ha and Schmidhuber, 2018), or directly with nonlinear

observers and controllers as in our method (Terzi et al., 2021). To our knowledge, our work represents the

first application of the RNN/observer/MPC architecture to the task of manipulating deformable objects.

4.2 Problem Setting and Preliminaries

We consider a robot manipulating a deformable object such that a particular point on the object tracks a

trajectory. We define a setting with the following assumptions:

Assumption 4.2.1 (Input). The deformable object is attached to the robot’s end effector by an unbreakable

grasp at a fixed position. The control policy interacts with the robot by commanding the position and

attitude of the grasp point.

Assumption 4.2.2 (Output). The robot’s perception system can accuratelymeasure the three-dimensional

position of a single point on the surface of the deformable object.

85

Figure 4.1: Physical testbed for our method. Trajectories are tracked by a Vicon motion capture marker
attached to the end of a pool noodle, rigidly held by a Franka Emika Panda robot. Pitch/yaw inputs
ū = (ϕ, ψ), tracking point measurement ȳ, and coordinate axes (X,Y, Z) shown. (The fiducial marker
visible in the image is not used.)

Assumption 4.2.3 (Objective). The robot shouldmanipulate the deformable object such that themeasured

point on its surface tracks a given trajectory in three-dimensional space.

Assumption 4.2.4 (Protocol). Interaction with the environment is divided into two stages. In the prepa-

ration stage, the robot can interact with the deformable object, perform calculations, and store results.

There is no time limit on this stage. In the testing stage, a supervisor reveals the trajectory to be tracked.

The robot must track the trajectory promptly without slow pre-computations. The robot can use all the

results stored from the preparation stage, but cannot interact with the deformable object in any way other

than attempting to track the trajectory. This restriction is motivated by safety- and time-constrained tasks,

where it may not be feasible for the robot to perform additional exploratory actions.

86

Interact
with object

Train Recurrent
Neural Network Extended Kalman Filter

Model Predictive Control

Robot, Object, Motion Capture

D θ

x̂

y

u

Preparation Testing

Figure 4.2: Diagram of our system. A small dataset of control inputs and tracked marker locations is
obtained from the real system. A recurrent neural network (RNN) model is trained to predict input/output
behavior with a latent state. The RNN forms the nonlinear dynamics model for an extended Kalman filter
(EKF) and model-predictive controller (MPC) to track a dynamic input trajectory with the deformable
object.

Formally, we assume that the coupled system of the robot and deformable object can be described by

a continuous-time, deterministic, time-invariant dynamical system

˙̄x = f̄(x̄, ū), ȳ = h̄(x̄), (4.1)

where the state x̄ is an abstract infinite-dimensional quantity representing the full continuum state of the

deformable object and the robot, the input ū ∈ SE(3) is the desired pose of the robot end effector, and

the output ȳ ∈ R3 is the position of the measured point. The unknown dynamics f̄ encapsulates both

the deformable object itself and a low-level controller that attempts to track the end effector pose input ū

by issuing actuator commands, e.g. motor torques, to the robot. The measurement model h̄ extracts the

position of the measured point from the continuum state.

Assumption 4.2.5. The true system has a unique globally exponentially stable equilibrium state x̄0 cor-

responding to the steady-state identity input I , i.e. f̄(x̄0, I) = 0. This assumption is realistic for damped

elastic objects, such as closed cell foam. We assume that no new plastic deformations to the foam (such as

a permanent bend) are introduced during our experimental protocol.

The control policy interacts with the system (4.1) in discrete time steps of fixed length∆t. In this para-

graph we overload the same notations for discrete-time and continuous-time inputs, states, and outputs;

for the remainder of the chapter we will refer to the discrete-time quantities exclusively. At step k ∈ N,

87

the discrete-time input ū[k] is supplied to the continuous-time system as a zero-order hold, resulting in

the continuous-time input signal ū(t) = ū[⌊t/∆t⌋] for all t ≥ 0, and the discrete-time output ȳ[k] is sam-

pled such that ȳ[k] = ȳ(k∆t). Our control task is specified by a discrete-time signal of K goal positions

z[1], . . . , z[K] ∈ R3 for the tracked point and the cost function

J =
∑K

k=1 ∥z[k]− ȳ[k]∥
2
W , (4.2)

where the weighting matrixW ⪰ 0 encodes a (potentially) non-isotropic tracking objective.

Remark The protocol in Assumption 4.2.4 rules out some methods that have been widely used for de-

formable manipulation. Trajectory optimization methods that build a local dynamics model around a

reference trajectory by interacting with the environment, such as guided policy search (Thuruthel et al.,

2019), violate the rule against non-task interaction in the testing stage. On the other hand, goal-conditioned

reinforcement learning (e.g. Andrychowicz et al., 2017) would be compatible with our protocol.

4.3 Methods

The components of our method are outlined in Figure 4.2. To ensure that our system relies on the whip-like

resonant behavior of the deformable object to track trajectories, rather than relying on large translational

movements of the robot end effector, we restrict the inputs to only the pitch ϕ and yaw ψ angles of the

end effector. We denote this restricted space as U ⊂ SE(3). In practice, we generate training data within

a compact subset of pitch and yaw angles, and regularize the MPC problem so that inputs far from the

identity I are penalized. Therefore, we parameterize U by R2 (in radians) and ignore potential issues of

multiple covering (§2.2.3).

88

4.3.1 Data collection

We begin by collecting a training dataset D containing N input-output trajectories from the real system.

We denote by ū[j, k] and ȳ[j, k] the input and output from the kth time step of the jth trajectory in D.

Before starting each trajectory, we apply the identity input and allow the system to settle for several

seconds (10 in our experiments) to ensure that the system returns to a state very close to the rest state

x̄0. This will happen promptly due to Assumption 4.2.5. We then apply random sinusoidal pitch and yaw

inputs. Sinusoidal inputs excite the system enough to demonstrate large-scale dynamics such as resonance

that are important for manipulation, but are smooth enough to respect the actuator limits of our robot.

The sinusoidal inputs are chosen to respect a user-selected angular acceleration limit ω̇max and abso-

lute angle limits ϕmin, ϕmax and ψmin, ψmax to avoid triggering our robot arm’s built-in safety stop when

actuator limits are reached. For each angle, the sinusoid’s frequency ν is sampled log-uniformly between

0.125Hz and 3Hz. The maximum angular acceleration of a sinusoid is given by 2πAν2, where A is the

amplitude. Therefore, ν and the acceleration limit induce a maximum amplitudeA ≤ Amax = ω̇max/2πν
2.

We sample the amplitude uniformly from [0.1, Amax]. Finally, we sample the phase uniformly from [0, 2π)

and add a constant offset, which is sampled uniformly from the range induced by the amplitude and angle

limits.

4.3.2 RNN dynamics model

The true state x̄ of the deformable object is an infinite-dimensional continuum of points, which is not

representable on a computer without discretization and approximation. Furthermore, the dynamics of the

system are not purely dictated by the behavior of the deformable object—they also include the behavior

of the low-level controller of the robot arm. We overcome both challenges by representing the system

state as the hidden state of a learned RNN. In comparison to other methods of system identification from

input/output data, such as linear methods (Brunton and Kutz, 2019), RNNs are a highly expressive class

89

of nonlinear state-space models. Recall from § 2.11.4 that the RNN is a generic function approximation

scheme parameterized by a real-valued vector θ, and consists of a discrete-time dynamics model

x[k + 1] = fθ(x[k], u[k]), y[k] = hθ(x[k]), (4.3)

where x ∈ Rn is the internal state, u is the input, y is the output, and fθ and hθ are the dynamics and

measurement functions respectively. Both fθ and hθ are differentiable with respect to their arguments and

the parameter θ. The particular form of the functions fθ and hθ must be carefully chosen to maximize ex-

pressiveness while preserving desirable properties for optimization, but from the perspective of estimation

and control, their exact form is unimportant.

The RNN is trained on the dataset D to minimize a regression loss on the input-output map over

complete sequences:

minimize
θ

N∑
j=1

Kj∑
k=1

∥ȳ[j, k]− hθ(x[j, k])∥22

subject to x[j, 0] = 0

x[j, k + 1] = fθ(x[j, k], ū[j, k]),

(4.4)

where Kj is the length of the jth trajectory in D. The fixed initial state of 0 is justified in our setting

because each trajectory inD begins at the rest state x̄0. We use input and output projections, as discussed

in §2.11.4.1, with a tanh nonlinearity after (resp. before) the input (resp. output) projection. We find an

approximate local optimum of (4.4) using stochastic gradient descent.

4.3.3 Model-predictive control with reduced-order model

After finding a value of the RNN parameter θ∗ that approximately optimizes the learning objective (4.4),

we use the RNNmodel in a model-predictive control (MPC) framework to optimize the trajectory-tracking

90

objective (4.2) in an online manner. Assume temporarily (we will return to this assumption in §4.3.4) that

at time step k we know a value x̂[k] of the abstract RNN state that is consistent with the input and output

history from previous time steps in the real-world system. We solve the short-horizon optimal control

problem

minimize
ū[k],...,

ū[k+H−1]

H∑
i=1

∥z[k + i]− hθ∗(x[k + i])∥2W

+ α

H−1∑
i=0

d(ū[k + i− 1], ū[k + i])

+ β

H∑
i=1

d(ū[k + i], I) (4.5)

subject to x[k] = x̂[k],

x[k + i+ 1] = fθ∗(x[k + i], ū[k + i]) ∀i.

In the objective (4.5), H ≪ K is the MPC horizon. In the second and third terms, d : U × U 7→ R≥0 is

a semimetric (§ 2.2.1) on the input space U . The first regularization term, weighted by constant α ≥ 0,

encourages smoothness of the control signal. The second regularization term, weighted by constant β ≥ 0,

encourages the robot to stay near its rest state. Solving (4.5) yields a sequence of inputs

ū∗[k], . . . , ū∗[k +H − 1]

optimized to track the next H steps of the full goal trajectory. Following the standard moving horizon

architecture (§2.8.6.1), we apply only the first input ū∗[k] from the solution to the real system. Then, at

time step k + 1, we solve a new instance of (4.5).

The optimization problem (4.5) is nonconvex, but the solution from the previous time step provides a

high-quality initial guess, so local optimization methods typically perform well as long as the initial guess

91

is not close to a bad local optimum (Allgöwer and Zheng, 2012). We obtain an approximate solution with a

few steps of gradient descent with momentum. The momentum state from previous MPC steps is persisted

and time-shifted in the same manner as the initial guess.

4.3.4 Estimating the RNN state

In § 4.3.3, we assumed the availability of a RNN state x̂[k] that is consistent with previous inputs and

outputs from the real-world system. To obtain x̂[k], it is not sufficient to simply evaluate fθ∗ recursively on

ū[1], . . . , ū[k − 1]. Because the RNNmodel is not perfect, the true outputs ȳ[1], . . . , ȳ[k − 1] obtained from

the real-world system may diverge from the outputs hθ∗(x[1]), . . . , hθ∗(x[k − 1]) predicted by applying

the RNN model in this open-loop manner.

Instead we observe that, although the RNN state has no direct physical meaning, the RNNmodel is still

a nonlinear discrete-time dynamical system with known dynamics. Therefore, its state can be estimated

from the input-output history using standard techniques from estimation theory.∗ In particular, we apply

an extended Kalman filter (EKF) to the RNN model. The EKF is defined by linearizing the system about

the current state and applying the standard linear Kalman filter covariance propagation and update steps,

as discussed in §2.9.1.10. We now review the well-known EKF equations to highlight the role of the RNN.

The EKF maintains a Gaussian-distributed belief over the RNN state. At time k, the belief is distributed

according to

x[k] ∼ N (µ[k],Σ[k]),

∗In general, nonlinear state estimation techniques provide no guarantees of optimality or other notions of correctness.

92

where N (µ,Σ) is the Gaussian distribution with mean µ and covariance Σ. After sending an input ū[k]

to the system, we then update the belief according to

µ[k|k − 1] = fθ∗(µ[k − 1], ū[k]),

Σ[k|k − 1] = F [k]Σ[k − 1]F [k]⊤ +Q[k],

(4.6)

where

F [k] =
∂fθ∗

∂x
(µ[k − 1], ū[k])

is the Jacobian of the RNN dynamics fθ∗ with respect to state. The process noise covariance Q[k] ⪰ 0

represents noise in the RNN abstract state, so it cannot be derived from a physical model or estimated from

data. We simply set Q to a scaled identity matrix in this work. Next, the measurement ȳ[k] is captured

from the real system. We compute the measurement residual γ[k] = ȳ[k]−hθ∗(µ[k|k − 1]). According to

the current belief, γ[k] has covariance

S[k] = H[k]Σ[k|k − 1]H[k]⊤ +R[k],

where

H[k] =
∂hθ∗

∂x
(µ[k|k − 1])

is the Jacobian of the RNN observation function hθ∗ with respect to state. The sensor noise covariance

R[k] ≻ 0 represents a physically meaningful quantity that can be derived from a model or estimated from

data. In this work we use a motion capture system with isotropic noise, so we set R to a constant scaled

identity matrix. We then compute the Kalman gain

K[k] = Σ[k|k − 1]H[k]⊤S[k]−1

93

and update the belief according to

µ[k|k] = µ[k|k − 1] +K[k]γ[k],

Σ[k|k] = (I −K[k]H[k])Σ[k|k − 1].

(4.7)

We then use the mean of the belief distribution as the initial state for the MPC problem (4.5), that is,

x̂[k] = µ[k].

4.3.5 Implementation

For the RNN reduced-order dynamics model fθ , we select the long short-termmemory (LSTM) architecture

(§2.11.4.1). Numerical values of the architectural and training hyperparameters are listed in Table 4.1. We

train the LSTM in PyTorch (Paszke et al., 2019). We also solve the model-predictive control problems and

implement the EKF in PyTorch due to the ease of differentiating through the RNNmodel. We run the MPC

control loop at 40Hz.

Table 4.1: Values of user-chosen constants in our experiments.

Q EKF process covariance 10−6I
R EKF measurement covariance 10−2I

H MPC horizon 25
α MPC smoothness weight 1.0
β MPC homing weight 1e-1
— MPC gradient descent rate 4e-1
— MPC gradient descent steps 5

— LSTM layers 1
n Reduced state dimension 200
— LSTM SGD steps 1e4
— LSTM SGD learning rate 1e-3
— LSTM SGD batch size 10

N # trajs. in dataset 100

94

u
ȳ = h̄(x̄)

Figure 4.3: Schematic diagram of pool noodle experimental setup showing end effector pose ū and tracked
surface point ȳ. Details are given in §4.4.

4.4 Experiments

In all experiments, our deformable body is a thin cylinder of uniform closed-cell polyethylene foam, com-

monly known as a pool noodle, with length 1.5m and diameter 6.5 cm. To attach the object to the robot,

we press-fit approximately 4 cm of one end of the pool noodle into a rigid 3D-printed ring attached to

the robot end effector. To track the distal end of the object, we attach a rigid assembly of motion capture

markers and track its full pose with a Vicon motion capture system. The measurement ȳ has a calibrated

offset from the marker assembly to lie on the center line of the pool noodle. Our experimental setup is

shown in Figure 4.1.

The robot is a Franka Emika Panda. To track the pose commands ū ∈ SE(3) output by the MPC

controller, we apply a proportional-only control law in both the position and in the attitude quaternion to

generate desired linear and angular velocities v for the end effector. We compute the kinematic Jacobian

from libfranka and produce desired joint velocities using the Jacobian pseudoinverse with null space

optimization towards the “home” position (Siciliano et al., 2009).

4.4.1 Model frequency response

To validate our RNN model, we compare its empirical frequency response near the internal state x = 0 to

that of the true physical system at its rest state x̄0. Frequency response is a holistic property of the model

that depends on its behavior in multiple parts of the state space. To avoid the complications of frequency-

domain analysis for multiple-input/multiple-output systems, we actuate the system only in the yaw axis ψ

95

and measure only the deflection of the pool noodle tip in the horizontal axis. Yaw inputs, as opposed to

pitch inputs, avoid the asymmetric effect of gravity. .

We sample 33 geometrically-spaced frequencies ranging from 0.125Hz to 2Hz. For each frequency,

we apply a yaw input with a small amplitude (11.5◦ peak-to-peak) for 20 sec and record the trajectory

of the pool noodle tip ȳ. The small input amplitude allows higher-frequency inputs before reaching the

robot’s actuator limits. We discard approximately the first half of the recording (on the nearest whole cycle

boundary) to eliminate transient effects. We then compute the empirical gain and phase by taking the

inner product of the output signal with complex exponential functions, analogous to the discrete Fourier

transform. Because the input and output have different units, only the relative gain magnitudes between

different frequencies are meaningful. We normalize the gains such that the gain of the real system for the

slowest input frequency equals 1.

Bode (gain and phase) plots for each system are overlaid in Figure 4.4. In the true physical system, we

observe typical behavior of a resonant lowpass filter with a strong resonant peak around 0.8Hz. The peak

gain is approximately 4 times larger than the low-frequency gain. This represents a dramatic phenomenon

that a faithful model must capture. In the RNN model, the gain response closely matches the real system.

The phase responsematches closely below the resonant frequency, but begins to lag behind the true system

for high frequencies. We suspect this may be due to an unbalanced training data distribution. Overall, this

experimental result suggests that the RNN model has successfully captured the frequency response of the

physical system.

4.4.2 MPC tracking

Weapply ourmethod to track several test trajectorieswhich attempt to expose the controller’s performance

with regard to resonant dynamics. The goal trajectories z[1], . . . , z[K] ∈ R3 are specified by the user. As

described in eq. (4.2), our tracking cost is non-isotropic. We use the valueW = diag(0, 1, 1) to focus only

96

1/8 1/4 1/2 1 2

frequency (Hz)

0

1

2

3

4

gain

1/8 1/4 1/2 1 2

frequency (Hz)

0

−90

−180

−270

phase (deg)

real lstm

Figure 4.4: Frequency-domain gain and phase response (Bode plots) for real pool noodle and LSTMmodel.

−0.5 0.0 0.5
y

−0.6

−0.4

−0.2

0.0

z

circle

−0.5 0.0 0.5
y

lissajous

−0.5 0.0 0.5
y

rectangle

goal closedloop openloop

Figure 4.5: Two-dimensional projections of paths traced by pool noodle free end in MPC tracking experi-
ments. See §4.4.2 for details and discussion.

97

-0.25
0.00
0.25

y

-0.50

0.00

z

-0.50

0.00

pi
tc
h

0 1 2 3 4 5 6 7

time (sec)

-0.10
0.00
0.10

ya
w

goal closedloop openloop

Figure 4.6: Traces of rotation angle inputs (pitch, yaw) and horizontal and vertical components of pool
noodle free end (y, z) for MPC tracking of the circle trajectory (see Figure 4.5). The closed-loop variant of
our method shows superior tracking performance.

98

on tracking in the Y- and Z-axes, which represents the view from the front of the robot. Without this

non-isotropic weight, the goal trajectory would need to be a carefully designed curve inR3 to be trackable

with zero error.

We show the results from three trajectories in Figure 4.5. The first two trajectories are a circle of diam-

eter 0.6m and a figure-8 Lissajous curve of width 1m and height 0.4m. Both trajectories are sinusoidal

in each axis, which matches the data collected during our training step. The circle and the vertical axis of

the Lissajous curve are set to the system’s resonant frequency 0.8Hz as determined experimentally. The

third trajectory is a rectangle with constant linear velocity along each edge (no stopping at corners). These

trajectories are close to the robot’s dynamic limits as discussed in §4.3.1. Improvements in our low-level

controller are required to test more demanding trajectories that push the system further into nonlinearity.

To show that the EKF observer providesmeaningful feedback to the controller (the “closed-loop” setup),

we compare it to a setup that assumes the predicted feedforward state, i.e. the value yielded by applying the

RNN dynamics fθ∗ to the full sequence of past inputs, is always correct (the “open-loop” setup). The results

of this comparison are visualized in Figures 4.5 and 4.6, and the tracking errors are compared numerically

in Table 4.2.

Table 4.2: MPC tracking errors

max error (cm) mean error (cm)
shape kind

circle closedloop 12.59 5.59
openloop 29.15 11.61

lissajous closedloop 9.19 4.43
openloop 14.85 4.77

rectangle closedloop 14.60 6.34
openloop 14.62 6.01

For the circle trajectory, we observe significantly improved performance in both mean and maximum

error from the closed-loop setup. In the traces over time, shown in Figure 4.6, the open-loop solution

drifts towards stronger resonance in the vertical axis and weaker resonance in the horizontal axis. In

99

contrast, the error of the closed-loop solution does not grow over time, indicating that our EKF setup

is able to compensate for model error. For the Lissajous trajectory, the closed-loop setup yields a minor

improvement in mean tracking error but a significant improvement in maximum error. The rectangle

trajectory shows little difference between the open- and closed-loop approaches, but it is noteworthy that

both approaches track the rectangle without gross errors, even though it is physically infeasible and not

similar to the training data. This result suggests that the LSTM model behaves reasonably for at least one

sequence input that is dissimilar to those in the training data.

4.5 Conclusion

We have described and demonstrated a system for optimal control in settings with unknown complex

dynamics but a known reward function. Our approach is completely data-driven, and requires a fixed

initial data-collection phase without further exploratory actions. We model our dynamical system as an

LSTM recurrent neural network and design a nonlinear MPC controller. We use an EKF state observer to

account for model error by estimating a value of the LSTM hidden state consistent with past inputs and

outputs.

We apply our method to the task of manipulating a deformable object such that a particular point on

the object tracks a fast trajectory. We validate our model on a real hardware setup with a robot manipulator

holding a foam pool noodle, measured by a motion capture system. Our experiments show that closing

the loop with the EKF observer improves tracking performance compared to an open loop control scheme

for several of the test trajectories.

In future work, we aim to improve tracking accuracy by investigating other nonlinear state estimation

methods and MPC implementations. The EKF is one of several ways to account for modeling error. Other

nonlinear state estimators such as particle filters and moving window least-squares estimators could also

be adapted to estimate RNN internal states. Alternatively, a pure deep-learning approach might add past

100

observations as inputs to the RNN. For MPC, a more sophisticated constrained optimization scheme could

be applied to the nonlinear MPC problem (4.5) to help enforce smoothness and actuator limits. We are

also interested in applying our work to non-position-based control tasks, such as force control for using

deformable objects as tools.

We also note that our method resembles the inner loop of a model-based reinforcement learning al-

gorithm. An extended method could use the data gathered at test time to further update the model. This

could relax the demand on good state space coverage in the initial training data.

101

Chapter 5

Variance of Policy Gradient for LQR problems

5.1 Introduction

We concluded Chapter 3 by discussing some possible reasons why reinforcement learning with neural

network “universal policies” might lead to a suboptimal multi-system policy. One possibility is the inter-

action between the RL algorithm and the problem. The RL algorithm was able to learn good policies for a

single ϕ ∈ Φ, but when deploying the same algorithm on the multi-system problem, it was unable to learn

a multi-system policy that matched the single-system policies in aggregate. One possible reason is that

some property of the multi-systemMDP hindered the performance of the algorithm. More broadly, it leads

us to ask the question: How do properties of the MDP dynamics impact the performance of RL algorithms?

For RL in finite MDPs, performance bounds are most commonly given with respect to the number

of states, actions, and rewards, and the horizon length (if finite) or discount factor (if infinite-horizon)

(Agarwal et al., 2022). In the more challenging setting of undiscounted infinite-horizon MDPs with the

average reward criterion, stronger assumptions on the MDP such as connectedness (resp. ergodicity) are

required, and regret bounds are given in terms of related quantities such as diameter and/or span (resp.

mixing and/or hitting time). Wei et al. (2020, Table 1) review some results of this type alongside their own.

The work presented in this chapter was originally published in Preiss et al. (2019). The related work section has been
expanded to include more recent research in this area.

102

Our results in Chapter 3 are difficult to investigate from a theoretical perspective due to the combi-

nation of neural network function approximation, complex deep RL algorithms with many “tricks”, and

nonlinear dynamics with contact (in the MuJoCo experiments). Adding the multi-system structure in-

creases the complexity further. As we will discuss in §5.2, the theoretical understanding of reinforcement

learning in continuous spaces has advanced considerably in the past several years. However, at the time

this project was initiated, there were few theoretical guarantees for RL beyond finite MDPs. Therefore,

we narrowed our focus to a very simple continuous MDP and a simple RL algorithm. Since the theoreti-

cal picture for single-system MDPs is still far from complete, we leave the development of RL theory for

multi-system problems to future work.

The experiment in §3.6 used PPO, a member of the policy gradient family of RL algorithms (§2.7.2).

Policy gradient methods construct an unbiased estimate of the gradient of the RL objective with respect to

the policy parameters, and perform stochastic gradient ascent/descent with this estimate. Policy gradient

methods are widely used for RL in continuous spaces because, unlike Q-learning, they do not require

evaluating an “argmax” over a continuous U , which is computationally intractable in general. However,

the gradient estimate is known to suffer from high variance (Greensmith et al., 2004). The earliest and

simplest policy gradient algorithm is REINFORCE (Williams, 1992). More recent algorithms such as TRPO

and PPO (Schulman et al., 2015, 2017) extend the basic idea of REINFORCE with techniques to inhibit the

possibility of making very large changes in the policy action distribution in a single step. In a benchmark

test (Duan et al., 2016a), these algorithms generally learned better policies than REINFORCE, but their

additional complexity makes them hard to analyze.

In this chapter, we seek a more detailed understanding of how the policy gradient estimate variance

relates to properties of the continuous-space Markov decision process (MDP) that defines the RL problem

instance. As an analytically tractable class of continuous MDPs, we select the linear-quadratic regulator

(LQR) problem, introduced in §2.9.1.6. Our primary contributions are derivations of bounds on the variance

103

of the REINFORCE gradient estimate as an explicit function of the dynamics, reward, and noise parameters

of the LQR problem instance. We validate our bounds with comparisons to the empirical gradient variance

in random problems. We also explore the relationship between gradient variance and sample complexity,

but find it to be less straightforward, as the problem parameters that affect variance also affect the op-

timization landscape. We emphasize that our goal is not to draw a conclusion about the utility of using

REINFORCE to solve LQR problems, but rather to use LQR as an example system that is simple enough to

allow us to “look inside” the REINFORCE policy gradient estimator.

5.2 Related work

Policy gradient methods for LQR LQR systems are a popular case study for analyzing policy gradient

algorithms in continuous spaces. They have also been studied in the context of model-based and value-

based RL algorithms, but we restrict our attention to policy gradient methods here. Fazel et al. (2018)

showed that, even though the optimization landscape of LQR is neither convex nor smooth, gradient de-

scent using a zeroth-order optimization approximation of the policy gradient enjoys global convergence

and sample complexity bounds. The analysis centers on the gradient domination (also known as Polyak-

Łojasiewicz) condition. Malik et al. (2018) and Bu et al. (2019a) strengthened this type of result and gen-

eralized to other LQR variants. Bhandari and Russo (2019) generalized the gradient domination technique

to other highly structured problems outside the LQR setting, including finite MDPs, an optimal stopping

problem, and an inventory control problem. Alternatively, Mohammadi et al. (2019) obtained similar results

for the continuous-time case by relating the gradient flow in a classic convex reparameterization of the

LQR problem to the nonconvex policy gradient. Sun and Fazel (2021) generalized the reparameterization-

based results to a broader family of LQR problems. Cassel and Koren (2021) obtained a nearly optimal

regret bound for policy gradient methods with respect to the time horizon, matching a minimax lower

bound of Simchowitz and Foster (2020) up to logarithmic factors. In contrast, Tu and Recht (2019) showed

104

that REINFORCE is strictly less efficient than model-based methods with respect to the state and action

dimensionalities in the cheap-control setting.

Most of the aforementioned works study exact policy gradients or policy gradient approximations

obtained by parameter-space noise or perturbations, similar to generic derivative-free optimization meth-

ods. This is in contrast to the action-space noise used by REINFORCE, as described in §2.7.2. The work of

Tu and Recht (2019) is an exception, but their variance analysis only applies to the restricted class of cheap-

control LQR problems used in their lower bound. To our knowledge, the work in this chapter represents

the only generic variance upper bound for action-space policy gradient methods in the LQR setting.

Nonlinear system classes Outside the LQR setting, researchers have also obtained theoretical guar-

antees in settings where the state space, and possibly the action space, are continuous. The linear MDP,

in which transition probabilities and rewards are linear in a feature space, is a popular case for anal-

ysis (Jin et al., 2020). Several variations of the linear MDP model exist. Linear MDPs generalize finite

MDPs. However, this class cannot express the LQR problem (Song and Sun, 2021), which suggests that it

may be of limited relevance for robotics. Mania et al. (2022) gave a finite-sample complexity guarantee

for the system identification problem in the expressive kernelized nonlinear regulator (KNR) system class.

Kakade et al. (2020) proposed a model-based RL algorithm with a regret bound depending on information-

theoretic quantities for KNRs, but their algorithm is computationally intractable. Song and Sun (2021)

propose a tractable model-based method for KNRs. Boffi et al. (2021) prove a regret bound for a different

class of nonlinear systems with a stronger stability assumption. Agarwal et al. (2019) give global conver-

gence results for policy gradient methods in tabular MDPs, and in highly generic settings with smooth

function approximation policies they give guarantees in terms of approximation error. Their results high-

light the importance of exploration. Agarwal et al. (2020) build upon this framework and address the

exploration issue using an ensemble of policies and exploration reward bonuses. Feng et al. (2021) extend

this class of methods to handle more nonlinearity. Recently, Jin et al. (2021) and Du et al. (2021) proposed

105

new expressive classes of tractable MDPs that generalize both linear MDPs and LQRs. These provide a

promising setting for future work on provably efficient algorithms for problems that combine features of

finite MDPs (like difficult exploration) with features of physical systems (like stabilizing at an equilibrium).

Reinforcement learning theory with deep neural networks Until recently, research into the theo-

retical properties of deep neural networks focused on static optimization problems like supervised learning.

He and Tao (2020) provide a survey on such results. More recently, researchers have begun to study deep

neural networks in reinforcement learning context. Fan et al. (2020) analyzed sample complexity for the

Deep Q-Network algorithm (DQN, Mnih et al., 2013) under the assumption of an fixed i.i.d. sampling distri-

bution, which they argue is a reasonable approximation of sampling from a large replay buffer generated

by ϵ-greedy exploration. Xu and Gu (2020) obtain the same rate for DQN but remove the i.i.d. assumption,

learning only from the most recent interaction with the MDP. However, the actions are sampled from a

fixed policy, as opposed to an ϵ-greedy policy with respect to the current estimate of Q⋆. Therefore, both

of these analyses sidestep the issue of exploration. Cai et al. (2019) analyze the closely related task of policy

evaluation, i.e. finding a fixed point of the policy Bellman operator instead of the optimality Bellman op-

erator, with neural networks. Yang et al. (2020) study the least-squares value iteration algorithm for both

kernels and overparameterized neural networks using optimism in the face of uncertainty for exploration.

Moving from value-based methods to policy-based methods, Wang et al. (2020) proved convergence

rates for actor-critic methods with vanilla and natural policy gradients. Their analysis showed that the

overparameterized neural networks can approximately satisfy the compatible function approximation con-

dition, which leads to unbiased policy gradient estimates. Liu et al. (2019) obtain similar results specifically

for the widely-used PPO and TRPO algorithms, but their analysis requires fully solving optimization prob-

lems for each update instead of taking a single gradient step. Agazzi and Lu (2021) work in the mean-field

regime with continuous-time dynamics to express the policy gradient dynamics as a partial differential

equation, and show that all fixed points are global optima.

106

5.3 Problem setting

In this chapter, ∥ · ∥ denotes the 2, 2 operator norm of a matrix or the 2-norm of a vector. We study the

REINFORCE policy gradient estimator, as defined in § 2.7.2. We consider a variant of the discrete-time

LQR problem introduced in §2.9.1.6 that adds stochasticity to the dynamics but retains noise-free full state

observability. Recall that the state space is X = Rn and action space U = Rm. The dynamics are linear

dynamics with additive Gaussian noise:

xt+1 = Axt +But + ϵxt , ϵxt ∼ N (0,Σx), (5.1)

for dynamics matrices A ∈ Rn×n, B ∈ Rn×m, and noise covariance Σx ⪰ 0. The initial state x1 follows

an arbitrary zero-mean Gaussian distribution. We consider the finite horizon objective

H∑
t=1

rt ≜
H∑
t=1

= −(xTt Qxt + uTt Rut) (5.2)

for cost matrices Q ⪰ 0, R ≻ 0. (Note that the standard LQR cost has been negated to fit the reward-

maximization formulation of RL.)

As discussed in §2.9.1.6, for the deterministic version of the problem, the infinite-horizon LQR cost is

minimized by a stationary linear policy ut = K⋆xt, K
⋆ ∈ Rm×n, where the value of K⋆ depends on

the solution of an discrete-time algebraic Riccati equation with coefficients derived from (A,B,Q,R). To

apply REINFORCE, the policy must be stochastic, so we consider linear stochastic policies

ut = Kxt + ϵut , ϵut ∼ N (0,Σu), (5.3)

for K ∈ Rm×n,Σu ∈ Sm++. The state noise Σx is an immutable property of the system, but the action

noise Σu is not. Instead, it is usually chosen by the user of the RL algorithm, or learned as a parameter

107

subject to optimization by the RL algorithm. Genuine noise in the actuators enters the system linearly

through the matrix B, so it can be subsumed into Σx.

In the RL literature, action noise is usually seen as either 1) a tool for exploring of the state space, 2) a

method of regularization to avoid converging on bad local optima, or 3) a consequence of a probabilistic in-

terpretation of the RL problem (Levine, 2018). Its effect on the RL optimization algorithm is less frequently

discussed, but in this work we find that it can be significant.

5.4 Main result: Variance bounds on the REINFORCE estimator

In this section, we present bounds on the variance of the REINFORCE estimator for LQR systems. Back-

ground on REINFORCE is given in § 2.7.2. The instantiation of REINFORCE for the system defined by

eqs. (5.1) to (5.3) using a single trajectory is:

ĝ =

(
H∑
t=1

Σ−1
u ϵut x

⊤
t

)(
H∑
t=1

rt

)
∈ Rm×n. (5.4)

The estimate ĝ is a function of the independent random variables {ϵut , ϵxt }Ht=1. Although xt is a linear

function of the previous noise variables {ϵuτ , ϵxτ}t−1
τ=1, the reward rt is quadratic in xt, so the overall form

of ĝ is a product of a sum and a sum of products of sums. Therefore, while it is possible to apply matrix

concentration inequalities (Tropp, 2015) to bound ∥xt−E[xt]∥ with high probability, it is more difficult to

bound the dispersion of ĝ. Instead, we use a more specialized method to derive a bound on

ν(ĝ) ≜
∑m

i=1

∑n
j=1Var(ĝi,j) = E

[
tr
(
ĝ⊤ĝ

)]
− tr

(
E[ĝ]⊤ E[ĝ]

)
,

which we simplify by bounding E
[
tr
(
ĝ⊤ĝ

)]
.

108

Theorem 5.4.1. If ρ(A+BK) < 1, then E
[
tr
(
ĝ⊤ĝ

)]
≤ O

(
n̄4C2

1C
2
2

)
, where

C1 = µ2
∥∥∥∥Σ− 1

2
u

∥∥∥∥ (∥x1∥+ σH)H ′,

C2 = ∥R∥∥Σu∥H + µ2
(
∥Q∥+ ∥R∥∥K∥2

)(
∥x1∥2 + σ2H

)
H ′2,

n̄ ≜ max{n,m}, σ ≜

∥∥∥∥Σ 1
2
x

∥∥∥∥ + ∥∥∥∥BΣ
1
2
u

∥∥∥∥, H ′ ≜ min
{
H, 1

1−ρ(A+BK)

}
, and µ is a constant bounding the

transient behavior of ∥A+BK∥t, with more details provided in §5.6.

Proof Sketch.

1. Rewrite ϵut , ϵxt as Σ
1
2
u δut ,Σ

1
2
x δxt , where the δut , δxt are unit-Gaussian random variables.

2. Bound tr
(
ĝ⊤ĝ

)
by P , a polynomial function of the χ-distributed random variables {∥δut ∥, ∥δxt ∥}Ht=1

with nonnegative coefficients.

3. Bound the sum of the coefficients of P by substituting 1 for all χ random variables.

4. Bound for the expectation of each monomial in P using the moments of the χ distribution.

A detailed proof of Theorem 5.4.1 is given in §5.6.

For a special case of scalar states and actions, we also show a lower bound on E[ĝ2]. Since E[ĝ] = 0

at a local optimum, this lower bound corresponds to the variance caused strictly by noise in the system

when the policy is already optimal. Here, the matricesA,B,K,Q,R are denoted as a, b, k, q, r, and σx, σu

denote the standard deviation (not variance) of state and action noise. This notation r is different from the

notation rt for reward.

Theorem 5.4.2. Ifm = n = 1 and 0 ≤ a+ bk < 1, then E[ĝ2] ≥ Ω(c21c
2
2), with

c1 =
1

σu

(
|x1|+ σ

√
H
)√

h′,

c2 = rσ2uH + (q + rk2)(x21 + σ2H)h′,

109

where σ ≜ σx + bσu and h′ ≜ min
{
H, 1

1−(a+bk)2

}
.

A detailed proof of Theorem 5.4.2 is given in §5.7. If we reduce the upper bound of Theorem 5.4.1 to

its scalar case, all terms match with the notable exception of the horizon-related terms H and H ′ (com-

pare to h′), which appear squared in several places in Theorem 5.4.1 compared to the equivalent term in

Theorem 5.4.2. There is another gap in the denominators of H ′ and h′ since 1
1−x2 <

1
1−x on the domain

x ∈ (0, 1). We conjecture our upper bound can be tightened by fully exploiting the independence of the

noise variables ϵx, ϵu.

5.5 Experiments

In the first set of experiments, we compare our upper bound of ν(ĝ) to its empirical value when exe-

cuting REINFORCE in randomly generated LQR problems. Our results show qualitative similarity in the

parameters for which our upper and lower bounds match. On the other hand, the gap with respect to

stability-related parameters is also visible. For each experiment shown here, we repeated the experiment

with different random seeds and observed qualitatively identical results.

We generate random LQR problems with the following procedure. We sample each entry in A and

B i.i.d. from N (0, σ=n−1/2) and N (0, σ=m−1/2) respectively. To construct a random k × k positive

definite matrix, we sample from the Wishart(k−1I, k) distribution by computing Q = XTX for X i.i.d.

analogous to A. The scale factor k−1 ensures that if the vector x is distributed by N (0, k−1I), such that

E[∥x∥2] = 1, then E[xTQx] = 1. We sample Q,R,Σx, and Σu this way.

In each experiment, we vary some of these parameters systematically while holding the others con-

stant, allowing us to visualize the impact of each parameter on ν(ĝ). We plot the upper bound of Theo-

rem 5.4.1 on the top row of Figure 5.1, and the empirical estimate of ν(ĝ) on the bottom row. In both cases,

since the variance depends on the initial state x1, we sampleN = 100 initial states x1 fromN (0, n−1I) and

110

plot Ex1∼N (0,n−1I) ν(ĝ). We estimate ν(ĝ)|x1=x for a particular initial state x by sampling 30 trajectories

with random ϵu, ϵx.

10 2 10 1 100 101 102

a

1011

1012

1013

1014

1015

1016

Bo
un

d(
Va

r(g
))

s

0.1
1.0
10.0

10 2 10 1 100 101 102

a

106

107

108

109

1010

1011

Va
r(g

)

s

0.1
1.0
10.0

(a) Relationship between Σx and Σu

10 2 10 1 100 101 102

|B|

1011

1013

1015

1017

1019

1021

1023

1025

Bo
un

d(
Va

r(g
))

0.1
1.0
10.0

10 2 10 1 100 101 102

|B|

105

107

109

1011

1013

1015

1017

Va
r(g

)

0.1
1.0
10.0

(b) Control authority |B|

0.2 0.4 0.6 0.8 1.0
(A + BK)

1010

1012

1014

1016

1018

1020

1022

Bo
un

d(
Va

r(g
))

0.01
1.0
100.0

0.2 0.4 0.6 0.8 1.0
(A + BK)

105

107

109

1011

1013

1015

1017

Va
r(g

)

0.01
1.0
100.0

(c) Stability ρ(A+BK)

Figure 5.1: Comparison between our upper bound from Theorem 5.4.1 (top) and the empirically measured
variance (bottom) as they relate to various parameters of the LQR problem. Behavior is qualitatively similar
for action noise covariance (a) and control authority (b), but less similar for the stability (c) where our
bounds are loose. Further discussion is in §5.5.

Effect of Σu In this experiment, we generate a random LQR problem and replace Σu with σuI for σu

geometrically spaced in the range [10−2, 102]. Using a scaled identity matrix is common practice when

applying RL to a problem where there is no a priori reason to correlate the noise between different action

dimensions. We evaluate the variance at the value K = K⋆, where K⋆ is the infinite-horizon optimal

controller computed using traditional LQR synthesis, as described in § 2.9.1.6. Using K⋆ ensures that

ρ(A+BK) < 1, a required condition to apply Theorem 5.4.1.

Results are shown in Figure 5.1a. The separate line plots correspond to scaling the random Σx by the

values {0.1, 1, 10}, while the x-axis corresponds to the value of σu. For each value of σx, there appears to

111

be a unique σu that minimizes ν(ĝ), and this value of σu increases with σx. This phenomenon appears in

both the bound and empirical variance.

Effect of ∥B∥ In this experiment, we generate a random problem wherem = n and replace B with bI

for b geometrically spaced in the range [10−2, 102]. The resulting system essentially gives the policy direct

control over each state. For each B, we compute a separate infinite-horizon optimal K and sample the

variance for different x1. Results are shown in Figure 5.1b. The separate line plots correspond to scaling

both the random Σx and the random Σu by the values {0.1, 1, 10}. The x-axis corresponds to the value

of b. Again, there appears to be a unique ∥B∥ that minimizes ν(ĝ), but its value changes minimally for

different magnitudes of Σx, Σu.

Effect of ρ(A+BK) Here we measure the change in variance with respect to the closed-loop spectral

radius ρ(A + BK). To synthesize controllers K such that ρ(A + BK) obtains a specified value, we use

the pole placement algorithm of Tits and Yang (1996). (Pole placement is discussed in §2.9.4.) We sample a

“prototype” set of n eigenvalues with λ1, . . . , λ⌈n/2⌉ as complex conjugate pairs λi, λi+1 = re±iφ, where

r ∼ Uniform([0, 1]) and φ ∼ Uniform([0, 2π)), and sample the remaining real λi fromUniform([−1, 1]).

Then, for each desired ρ, we compute Kρ = P(A,B, ρλ1, . . . , ρλn). By rescaling the same set of λi

instead of sampling a new set for each ρ, we avoid confounding effects from changing other properties

ofK .

Results are shown in Figure 5.1c. Again, we repeat the experiment for different magnitudes of Σx and

Σu. Unlike the previous two experiments, here we see qualitatively different behavior between our upper

bound and the empirical variance. The bound begins to increase rapidly near ρ = 1, corresponding to

the growth of 1/(1 − ρ) in the term H ′, but at ρ = 0.9 the H term becomes active in H ′, and the bound

suddenly flattens. In contrast, the empirical variance growsmoremoderately and does not explode near the

112

threshold of system instability. This further bolsters our confidence that the upper bound of Theorem 5.4.1

can be tightened to match the
√
H ′ and

√
H terms in the lower bound of Theorem 5.4.2.

103 105 107 109 1011 1013

empirical

108

1010

1012

1014

1016

1018

1020

1022

bo
un

d

n
3
10
30
H
3
10
30

Figure 5.2: Scatter plot of empirical ν(ĝ) (x-axis) and upper bound fromTheorem 5.4.1 (y-axis) with varying
state dimensionality n and time horizon H . Each point represents one random LQR problem.

Dimensionality parameters In all of the preceding experiments, we arbitrarily chose the state and

action dimensions n = 5, m = 3 and time horizon H = 10. To visualize the variance for other values

of these parameters, we generate 1000 random LQR problems with n and H each varying over the set

{3, 10, 30}. We fix m = ⌈n/2⌉. Results are shown in Figure 5.2. The overall positive trend with a slope

greater than 1 shows that the bound grows superlinearly with respect to the empirical, as expected. One

interesting property is the tighter clustering for large values of n. This may be due to several eigenvalue

distribution results in random matrix theory which state that, as n→∞, our random LQR problems tend

to become similar up to a basis change (Tao, 2012).

113

200 400 600 800 1000
iteration

3

4

5

6

co
st

x = 0.01

200 400 600 800 1000
iteration

x= 0.1

200 400 600 800 1000
iteration

x= 1.0

u

0.01
0.1
1.0
10.0

Figure 5.3: Learning curves of REINFORCE for a random LQR problem with varying scales of action noise
σu and environment noise σx. Larger σu can improve learning, despite larger variance of ĝ.

5.5.1 RL policy optimality for varying Σu

The results in §5.5 suggest that, for a fixed Σx, the magnitude of Σu has a significant effect on ν(g). This

is of practical interest because Σu is usually under control of the RL practitioner. It is therefore natural to

ask if the change in variance corresponds to a change in the rate of convergence of REINFORCE. We test

this empirically by executing REINFORCE in variants of one random LQR problem with different values

of Σu and Σx. To avoid a confounding effect from larger Σu incurring greater penalty from the −uTt Rut

term in rt, we evaluate the trained policies in a modified version of the problem where Σu = Σx = 0. It

can be shown that the optimalK⋆ for the stochastic problem is also optimal for the deterministic problem,

so each problem variant should converge to the same evaluation returns in the limit.

We initializeK by perturbing the elements of the LQR-optimal controller with i.i.d. Gaussian noise and

scaling the perturbation until ρ(A + BK) ≈ 0.98. After every 10 iterations of REINFORCE, we evaluate

the current policy in the noise-free environment. For each (Σu,Σx) pair, we repeat this experiment 10

times with different random seeds. The random seed only affects the ϵut , ϵxt and x1 samples. The aggregate

data are shown in Figure 5.3. Shaded bands correspond to one standard deviation across the separate runs

of REINFORCE. The lowercase σu, σx refer to scaling factors applied to the initial samples ofΣu,Σx in the

random LQR problem.

114

The effect is different than onewould predict under the hypothesis that the performance of REINFORCE

is mainly dictated by its estimation variance. For all values of Σx in the experiment, problems with larger

Σu converge faster—whereas Figure 5.1a would suggest that the “optimal” value of Σu changes with re-

spect to Σx. The fact that larger Σu tends to make REINFORCE converge faster is not obvious, given the

Σ−1
u term in ĝ (5.4). Also, when Σu is very small and Σx is very large, the algorithm becomes unstable and

sees large variations across different random seeds. For the middle values Σu ∈ {0.1, 1.0}, we observe

that larger Σx causes faster convergence.

10 1 100 101 102

u

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

su
bo

pt
im

al
it
y

ra
ti
o

x= 0.10

x= 0.32

x= 1.00

x= 3.16

x= 10.0

Figure 5.4: Suboptimality ratios of the policy after 1000 iterations of REINFORCE for a random LQR prob-
lem with varying scales of action noise σu and environment noise σx.

An alternate visualization of the same experiment is given in Figure 5.4. Here, as in Figure 5.1, the

horizontal axis corresponds to the action variance σu and the line colors correspond to different values

of the environment dynamics variance σx. However, instead of plotting the gradient estimate variance

on the vertical axis as in Figure 5.1, here we plot the suboptimality ratio of the final policy after running

115

REINFORCE for a fixed number of iterations. The ratio is taken relative to the LQR-optimal policy for the

infinite-horizon version of the problem.

In this plot we include results for larger values of σu than were shown in Figure 5.3. We observe that

the suboptimality does increase for large enough values of σu, so the effect is not monotonic as Figure 5.3

might suggest. However, the value of σu for which the suboptimality ratio is closest to 1 does not move

significantly for different values of σx. We remark further on these results in §5.8.

5.6 Proof of Theorem 5.4.1

In this section, we provide the detailed derivation of the upper bound stated in Theorem 5.4.1. We define

the following notations: let δxt and δut be independent random vectors that followN (0, In) andN (0, Im)

respectively for all t. The ϵxt and ϵut defined in Equations (5.1) and (5.3) can be written as ϵxt = Σ
1
2
x δxt and

ϵut = Σ
1
2
u δut . We will use the following steps to upper-bound E

[
tr
(
ĝ⊤ĝ

)]
:

1. Bound tr
(
ĝ⊤ĝ

)
byP , a polynomial of dxt ≜ ∥δxt ∥ and dut ≜ ∥δut ∥ for t = 1, 2, . . . ,H . We restrict that

P should have only nonnegative coefficients. Since we assume δxt and δut are independent random

vectors with standard normal distribution, dxt and dut will be independent random variables following

the χ(n) and χ(m) distributions respectively.

2. Bound the sum of the (already nonnegative) coefficients of P by substituting all of the dxt , dut with

one. More formally, let

P ({dxt , dut }Ht=1) =
∑
i

Ci

H∏
t=1

(dxt)
αt,i

H∏
t=1

(dut)
βt,i ,

116

where
∏H
t=1(d

u
t)
αt,i
∏H
t=1(d

x
t)
βt,i is the i-th monomial in P , and Ci is its nonnegative coefficient.

Then we calculate
∑

iCi by substituting all dxt , dut with 1. We use the notation 1(P) to denote this

operation (we define the 1(·) operator analogously for expressions other than P itself):

1(P) = P |dxt =1, dut =1, ∀t =
∑
i

Ci.j

3. Bound for the expectation of all monomials in P , i.e., findM such that

E

[
H∏
t=1

(dxt)
αt,i

H∏
t=1

(dut)
βt,i

]
≤M, ∀i.

With the three steps above, we can then bound E
[
tr
(
ĝ⊤ĝ

)]
≤ E[P] ≤

∑
iCiM = M1(P). To

calculateM , we can use the known formula for the k-th moment of a χ random variable.

Recall that

ĝ =

(
H∑
t=1

Σ−1
u ϵat x

⊤
t

)(
H∑
t=1

rt

)
,

and thus

tr
(
ĝ⊤ĝ

)
= tr

(H∑
t=1

Σ−1
u ϵut x

⊤
t

)⊤(H∑
t=1

Σ−1
u ϵut x

⊤
t

)
︸ ︷︷ ︸

Term1

(
H∑
t=1

rt

)2

︸ ︷︷ ︸
Term2

.

Thanks to the property 1(P) = 1(P1)1(P2) for polynomial P ≡ P1P2, and 1(P) = 1(P1) + 1(P2)

for P ≡ P1 + P2, we do not need to directly find P and bound 1(P). Below in Section 5.6.1, we first

bound ∥xt∥ by a polynomial ⌈xt⌉ of {dsτ , daτ}, and then find 1(⌈xt⌉). In Section 5.6.2 and 5.6.3, we further

upper bound 1(Term1) and 1(Term2) with the help of 1(⌈xt⌉). Then finally we obtain an upper bound

for E[tr
(
ĝ⊤ĝ

)
] asM1(Term1)1(Term2).

117

5.6.1 Bounding ∥xt∥

In this section, we bound ∥xt∥ from above. Although the spectral radius ρ(A+BK) determines the asymp-

totic stability of the closed-loop system, it guarantees little about the transient behavior–for example, for

any x > 1 and 0 < ϵ < 1, the matrix

A =

[
ϵ x

0 ϵ

]

has the properties ρ(A) < 1, ∥A∥ > x. Therefore, while the state magnitude ∥xt∥ is bounded by the

operator norm ∥A + BK∥t−1, it is too restrictive to require ∥A + BK∥ < 1. Instead, we will use the

following result:

Lemma 5.6.1 (Trefethen and Embree (2005)). Let A ∈ Rn×n be a matrix with ρ(A) < 1. Then there exists

µ > 0 such that, for all k ∈ N,

∥Ak∥ ≤ µρ(A)k. (5.5)

µ is bounded by the “resolvent condition” µ ≤ 2enr(A), where e is the exponential constant and

r(A) = sup
z∈C, |z|>1

(|z| − 1)∥(zI −A)−1∥. (5.6)

The derivation and interpretation of (5.6) is a deep subject related to the matrix pseudospectrum, cov-

ered extensively by Trefethen and Embree (2005). Intuitively, r(A) is large if a small perturbation ϵ ∈ Rn×n

would cause ρ(ϵ+A) > 1.

Expanding the state transition function in Equation (5.1) with the linear stochastic policy in Equa-

tion (5.3), we get

xt = (A+BK)t−1x1 +
t−1∑
τ=1

(A+BK)t−τ−1(Σ
1
2
x δ

x
τ +BΣ

1
2
u δ

u
τ). (5.7)

118

Recall that ∥ · ∥ denotes the ℓ2 norm for vectors and the ℓ2 − ℓ2 operator norm for matrices. By

Lemma 5.6.1, there exists µ such that ∥(A + BK)k∥ ≤ µρ(A)k. Let f = ρ(A + BK), σ2x = ∥Σx∥,

σ2u = ∥Σu∥, and b = ∥B∥. By repeatedly applying the triangle inequality,

∥xt∥ =

∥∥∥∥∥(A+BK)t−1x1 +
t−1∑
τ=1

(A+BK)t−τ−1(Σ
1
2
x δ

x
τ +BΣ

1
2
u δ

u
τ)

∥∥∥∥∥
≤
∥∥(A+BK)t−1x1

∥∥+ t−1∑
τ=1

∥∥∥∥(A+BK)t−τ−1(Σ
1
2
x δ

x
τ +BΣ

1
2
u δ

u
τ)

∥∥∥∥
≤ µf t−1∥x1∥+ µ

t−1∑
τ=1

f t−τ−1(σxd
x
τ + bσud

u
τ).

(5.8)

We denote the final bound in (5.8) as ⌈xt⌉. The bound ⌈xt⌉ is linear in the random variables {dxt , dut }Ht=1

with only positive coefficients. Furthermore,

1(⌈xt⌉) = µf t−1∥x1∥+ µ

t−1∑
τ=1

f t−τ−1(σx + bσu)

= µf t−1∥x1∥+ µ
t−2∑
τ=0

f τ (σx + bσu).

(5.9)

5.6.2 Bounding Term1

In this subsection we show that

tr

(H∑
t=1

Σ−1
u ϵut x

⊤
t

)⊤(H∑
t=1

Σ−1
u ϵut x

⊤
t

) ≤ ∥Σ−1
u ∥

(
H∑
t=1

dut ∥xt∥

)2

.

119

Let ξt = Σ−1
u ϵut . Then

tr

(H∑
t=1

ξtx
⊤
t

)⊤(H∑
t=1

ξtx
⊤
t

) = tr

 ∑
1≤i,j≤H

xiξ
⊤
i ξjx

⊤
j

=

∑
1≤i,j≤H

ξ⊤i ξjx
⊤
i xj

≤
∑

1≤i,j≤H
|ξ⊤i ξj ||x⊤i xj |

=
∑

1≤i,j≤H
|δui

⊤Σ−1
u δuj ||x⊤i xj |

≤
∑

1≤i,j≤H
∥Σ−1

u ∥∥δui ∥∥δuj ∥∥xi∥∥xj∥

= ∥Σ−1
u ∥

(
H∑
t=1

∥δut ∥∥xt∥

)2

≤ ∥Σ−1
u ∥

(
H∑
t=1

dut ⌈xt⌉

)2

,

(5.10)

in which we made use of the circulant property of the trace, the Cauchy-Schwarz inequality, and the fact

that Σ
1
2Σ−2Σ

1
2 = Σ−1 for positive semidefinite Σ.

120

5.6.3 Bounding Term2

We now bound C ≜
∑H

t=1−rt from above. Note that −rt ≥ 0, since Q ⪰ 0 and R ≻ 0. Let q = ∥Q∥,

r = ∥R∥, and k = ∥K∥. Then

C =
H∑
t=1

−rt =
H∑
t=1

x⊤t Qxt + u⊤t Rut

≤
H∑
t=1

q∥xt∥2 + r∥ut∥2 =
H∑
t=1

q∥xt∥2 + r∥Kxt +Σ
1
2
u δ

u
t ∥2

≤
H∑
t=1

q∥xt∥2 + r(k∥xt∥+ σu∥δut ∥)2

≤
H∑
t=1

q∥xt∥2 + 2rk2∥xt∥2 + 2rσ2u∥δut ∥2

≤ (q + 2rk2)
H∑
t=1

⌈xt⌉2 + 2rσ2u

H∑
t=1

(dut)
2,

(5.11)

where the triangle inequality and the fact (a + b)2 ≤ 2(a2 + b2) are used above. This bound on C is a

quadratic polynomial in the dx, du.

5.6.4 Combining bounds

Combining Section 5.6.2 and Section 5.6.3, we have

tr
(
ĝ⊤ĝ

)
≤ P = C2∥Σ−1

u ∥

(
H∑
t=1

dut ⌈xt⌉

)2

. (5.12)

For brevity, let α = ∥Σ−1
u ∥, β = q + 2rk2, γ = 2rσ2u, σ = σx + bσu, and H ′ ≜ min

{
H, 1

1−f

}
. The term

H ′ reflects the stability of the closed-loop system: if highly stable (f ≪ 1), we have H ′ ≪ H , but when

approaching instability (f → 1), H ′ approaches H .

121

We expand P and substitute dxt = 1, dut = 1 for all t to compute the sum of P ’s coefficients, using the

notation 1(·) for the transformation of replacing all d with 1. We first bound 1(C2):

1(C2) ≤

(
γH + β

H∑
t=1

1(⌈xt⌉)2
)2

≤

(
γH + βµ2

H∑
t=1

[
f t−1∥x1∥+ σH ′]2)2

≤

(
γH + 2βµ2

H∑
t=1

[
f2t−2∥x1∥2 + σ2H ′2])2

≤
(
γH + 2βµ2(H ′∥x1∥2 + σ2HH ′2)

)2
(5.13)

where the result is obtained by repeatedly applying the fact (a+ b)2 ≤ 2(a2 + b2). Next,

1(

(
H∑
t=1

dut ⌈xt⌉

)2

) ≤

(
µ

H∑
t=1

f t−1∥x1∥+ σH ′

)2

≤ µ2H ′2(∥x1∥+ σH)2.

(5.14)

Finally,

1(P) ≤ αµ2H ′2 (γH + 2βµ2(H ′∥x1∥2 + σ2HH ′2)
)2

(∥x1∥+ σH)2

= 4∥Σ−1
u ∥µ2H ′2 (rσ2uH + µ2(q + 2rk2)(H ′∥x1∥2 + σ2HH ′2)

)2
(∥x1∥+ σH)2

≜ 1(P).

(5.15)

1(P) is an order-8 polynomial in the ds, da. The formula for the 8th moment of a χ(n) random variable is

E[X8] = n(n+ 2)(n+ 4)(n+ 6),

so E[tr
(
ĝ⊤ĝ

)
] ≤ 1(P) ·O(n̄4), where n̄ = max(n,m).

(Since we are summing the variances of O(n̄2) random variables in ĝ, we would expect scaling of no

less than n̄2 compared to the scalar case.)

122

5.7 Proof of Theorem 5.4.2

In this section, we provide a lower bound for E[ĝ2] in the scalar case, m = n = 1. The matrices

A,B,K,Q,R are thus denoted as a, b, k, q, r here (notice that this notation r is different from the no-

tation rt for reward). Other notations follow the definitions in § 5.6. We will analyze the case when

0 ≤ a+ bk < 1.

Lemma 5.7.1.

E

(H∑
t=1

ϵut xt
σ2u

)2(H∑
t=1

rt

)2
 ≥ E

(H∑
t=1

ϵut xt
σ2u

)2
E

(H∑
t=1

rt

)2
 . (5.16)

Proof. When a+bk ≥ 0, all terms have positive coefficients. Rename the 2H random variables {δxt , δut }Ht=1

as x1, . . . , x2H . We can see that a monomial on the right-hand side:

E
[
xα1
1 · · ·x

α2H
2H

]
E
[
xβ11 · · ·x

β2H
2H

]

corresponds to the monomial on the left-hand side:

E
[
xα1+β1
1 · · ·xα2H+β2H

2H

]
.

The xi are independent zero-mean normal random variables, so the propertyE[xαi]E[x
β
i] ≤ E[xα+βi] holds

for any non-negative integers α, β. Combining with the fact that all coefficients are non-negative shows

the lemma.

123

In the following two subsections, we lower bound the two terms on the right-hand side of Eq. (5.16)

separately. Note that the first term can be simplified as

(
H∑
t=1

ϵut xt
σ2u

)2

=

(
H∑
t=1

δut xt
σu

)2

=
1

σ2u

(
H∑
t=1

δut xt

)2

.

5.7.1 Lower bounding E
[(∑H

t=1 δ
u
t xt

)2]
By the expansion of xt in Eq. (5.7), we have

E

(H∑
t=1

δut xt

)2
 = E

(H∑
t=1

δut
(
(a+ bk)t−1x1 + Lt

))2

≥ E

(H∑
t=1

δut (a+ bk)t−1x1

)2
+ E

(H∑
t=1

δut Lt

)2
 ,

where Lt ≜
∑t−1

τ=1(a+ bk)t−1−τ (σxδ
s
τ + bσuδ

a
τ). The first term is equal to

H∑
t=1

(a+ bk)2t−2x21 =
1− (a+ bk)2H

1− (a+ bk)2
x21.

The second term can be further written as

E

(H∑
t=1

δut

t−1∑
τ=1

(a+ bk)t−1−τ (σxδ
s
τ + bσuδ

a
τ)

)2

= E

 H∑
t=1

(δut)
2

(
t−1∑
τ=1

(a+ bk)t−1−τ (σxδ
s
τ + bσuδ

a
τ)

)2

= E

 H∑
t=1

(
t−1∑
τ=1

(a+ bk)t−1−τ (σxδ
s
τ + bσuδ

a
τ)

)2

= E

[
H∑
t=1

t−1∑
τ=1

(a+ bk)2t−2−2τ (σ2x + b2σ2u)

]

= (σ2x + b2σ2u)E

[
H∑
t=1

1− (a+ bk)2t−2

1− (a+ bk)2

]

124

= (σ2x + b2σ2u)

(
H

1− (a+ bk)2
− 1− (a+ bk)2H

(1− (a+ bk)2)2

)
.

In the above several equalities, we use the independence among δut , δxt . Combining two terms, we get

E

(H∑
t=1

δut xt

)2
 ≥ x21 +H(σ2x + b2σ2u)

1− (a+ bk)2
− (a+ bk)2H

1− (a+ bk)2
x21 − (σ2x + b2σ2u)

1− (a+ bk)2H

(1− (a+ bk)2)2

=

(
1− (a+ bk)2H

1− (a+ bk)2
x21 +

(
H − 1− (a+ bk)2H

1− (a+ bk)2

)
σ2x + b2σ2u

1− (a+ bk)2

)

≈

x21+H(σ2

x+b
2σ2

u)
1−(a+bk)2

when H ≫ 1
1−(a+bk)2

H
(
x21 +H(σ2x + b2σ2u)

)
when H ≪ 1

1−(a+bk)2

≈ min

{
H,

1

1− (a+ bk)2

}(
x21 +H(σ2x + b2σ2u)

)
= H ′ (x21 +H(σ2x + b2σ2u)

)
.

5.7.2 Lower bounding E
[(∑H

t=1 rt

)2]
5.7.3

We first lower bound this term by

E

(H∑
t=1

rt

)2
 ≥ E

[
H∑
t=1

rt

]2
= E

[
H∑
t=1

qx2t + r(kxt + σuδ
u
t)

2

]2

= E

[
H∑
t=1

(q + rk2)x2t + 2rkxtσuδ
u
t + rσ2uδ

a2
t

]2

=

(
(q + rk2)E

[
H∑
t=1

x2t

]
+Hrσ2u

)2

125

E

[
H∑
t=1

x2t

]
= E

[
H∑
t=1

(
(a+ bk)t−1x1 + Lt

)2]

= E

[
H∑
t=1

(
(a+ bk)2t−2x21 + 2(a+ bk)t−1x1Lt + L2

t

)]

= E

 H∑
t=1

(a+ bk)2t−2x21 +
H∑
t=1

(
t−1∑
τ=1

(a+ bk)t−1−τ (σxδ
x
t + bσuδ

u
t)

)2

(the middle term E[(a+ bk)t−1x1Lt] is zero because Lt is a sum of zero-mean RVs)

=
1− (a+ bk)2H

1− (a+ bk)2
x21 + E

[
H∑
t=1

t−1∑
τ=1

(a+ bk)2t−2−2τ (σ22 + b2σ2u)

]

=
1− (a+ bk)2H

1− (a+ bk)2
x21 + (σ2x + b2σ2u)

(
H

1− (a+ bk)2
− 1− (a+ bk)2H

(1− (a+ bk)2)2

)
≈ min

{
H,

1

1− (a+ bk)2

}(
x21 +H(σ2x + b2σ2u)

)
= H ′ (x21 +H(σ2x + b2σ2u)

)
.

The second-to-last approximation is obtained similarly as in the previous subsection.

5.7.4 Combining

Combining the results in previous two subsections, we get the final lower bound on E[ĝ2]:

E[ĝ2] = E

(H∑
t=1

δut xt
σu

)2(H∑
t=1

rt

)2
 ≥ E

(H∑
t=1

δut xt
σu

)2
E

(H∑
t=1

rt

)2

≥ Ω(c21c
2
2),

where (recall σ ≜ σx + bσu)

c1 =
1

σu

(
|x1|+ σ

√
H
)√

H ′,

c2 = rσ2uH + (q + rk2)(x21 + σ2H)H ′.

126

5.8 Discussion

In this chapter, we derived bounds on the variance of the REINFORCE policy gradient estimator in the

stochastic linear-quadratic control setting. Our upper bound is fully general, while our lower bound applies

to the scalar case at a stationary point. The bounds match with respect to all system parameters except the

time horizon H and closed-loop spectral radius ρ(A + BK). We compared our bound prediction to the

empirical variance in a variety of experimental settings, finding a close qualitative match in the parameters

for which the bounds are tight.

Our experiments in § 5.5.1 plotting the empirical convergence rate of REINFORCE suggest that the

effect of action noise Σu on the overall RL performance is not fully captured by its effect on the variance.

An interesting direction for future work would be to investigate the role of Σu more closely and attempt

to disentangle its effect on gradient magnitude, variance, exploration, and regularization. Such an analysis

could lead to improved variance reduction methods or algorithms that manipulate Σu to speed up the RL

optimization.

127

Chapter 6

Suboptimal Coverings

6.1 Introduction

In this chapter, we present workmotivated by one of the questions in the discussion of §3.5: How hard is it to

represent a goodmulti-system policy? We propose theα-suboptimal covering number to characterize multi-

system control problems where the set of dynamical systems and/or cost functions is infinite, analogous

to the cardinality of finite system sets. We study suboptimal covering numbers for continuous-time linear-

quadratic regulator problems (§2.9.2.5) and construct a class of multi-system LQR problems amenable to

analysis. For the scalar case, we show logarithmic dependence on the “breadth” of the space. For the matrix

case, we present empirical results and intermediate theoretical results towards an equivalent theorem.

In the multi-system control paradigm described in §2.6, we did not specify any particular properties of

the set of MDPsΦ. Let us consider the cardinality of the system set, using the example of a mobile robot as

motivation. If the system set is finite, like selecting between “map an environment” and “deliver a package”,

then its size is naturally quantified by the number of systems. If the system set is infinite, like delivering

packages with arbitrary mass and inertial properties, then its size is not so easily quantified. Even if Φ is

equipped with a metric or measure, these structures may be only weakly linked to the diversity of behavior

required for good performance on all systems.

Most work presented in this chapter was originally published in Preiss and Sukhatme (2021). The efforts towards the matrix
case in §6.7 are new.

128

Suppose a multi-system policy that maps state and system parameters directly to actions is to be se-

lected from a parameterized family of functions. As the system space expands from a singleton set, we

expect to need a more expressive class of functions to represent a good multi-system policy. In this work,

we propose the α-suboptimal covering number to capture this idea. For a system spaceΦ and a suboptimal-

ity ratio α > 1, we define N cov
α (Φ) as the size of the smallest set of single-system policies C such that for

every ϕ ∈ Φ, at least one π ∈ C has a cost ratio no greater than α relative to the optimal policy for ϕ. If the

policies in C are parameterized functions, then C provides an upper bound on the number of parameters

needed to represent an α-suboptimal multi-system policy. In switching-based adaptive control, where ϕ is

unknown, a smaller C reduces the computational complexity of the controller and can reduce the number

of switches per unit of time (Hespanha et al., 2000).

To study suboptimal covering numbers in a concrete setting, we consider continuous-time LQR prob-

lems (§2.9.2.5). LQR problems are a common setting to analyze learning algorithms because detailed prop-

erties are known (see §5.2 for examples). This has led to new inquiries into their fundamental properties

(Bu et al., 2019b). Our work follows the latter spirit. We construct a family of well-behaved multi-system

LQR problems where Φ is controlled by a “breadth” parameter θ ∈ [1,∞), and for which N cov
α (Φθ) is

finite and increasing in θ. For the special case of a scalar LQR problem, we derive matching logarithmic

upper and lower bounds on N cov
α (Φθ) as a function of θ.

As an effort towards analogous bounds for the matrix case, we present empirical results intended to

shed light on the problem structure. For the upper bound, we analyze properties of a logical extension of

our scalar cover. For the lower bound, we visualize suboptimal neighborhoods for two choices of “extremal”

systems, revealing surprising topological behavior for one choice. Finally, we present some intermediate

theoretical tools that may be useful for the matrix case, and more suboptimal neighborhood visualizations

for a generalization of our multi-system LQR family to include variations in the state dynamics matrix A

as well as the input matrix B.

129

This chapter is an initial step towards a comprehensive theory. In addition to a more complete picture

of deterministic LQR systems, ideas of α-suboptimal coverings could be applied to a wide range of multi-

system problems. We also hope they will lead to insights about function class expressiveness in learning-

based multi-system control.

6.2 Problem setting

In this section we define α-suboptimal covering numbers with respect to an abstract multi-system control

problem, independent of distinctions such as continuous vs. discrete time and stochastic vs. deterministic

dynamics. We then instantiate these definitions for a particular class of LQR problems.

Notation We consider a family of MDPs as defined in § 2.6, with state space X , action space U , and

system space Φ. We also require a class of reference policies Πref ⊆ UX and a strictly positive objective

function J : Φ × UX 7→ R>0. The partial application of J for ϕ ∈ Φ is denoted by Jϕ : UX 7→ R. The

optimal reference cost for an system is denoted by J⋆ϕ = infπ∈Πref
Jϕ(π).

Definition 6.2.1. Consider a multi-system optimal control problem (X ,U ,Φ,Πref) and a suboptimality

ratio α > 1. Given a policy π : X 7→ U , we define its α-suboptimal neighborhood as

Nα(π) =

{
ϕ ∈ Φ :

Jϕ(π)

J⋆ϕ
≤ α

}
.

A set of policies C ⊆ UX is an α-suboptimal cover of Φ if

⋃
π∈C

Nα(π) = Φ.

130

(Note that C need not belong to Πref – these definitions are still meaningful in the “improper” case.) The

α-suboptimal covering number of Φ, denotedN cov
α (Φ), is the size of the smallest finite α-suboptimal cover

of Φ if one exists, or∞ otherwise.

Standard LQR problem In this chapter, we analyze suboptimal coverings for continuous-time, deter-

ministic, infinite-horizon, LQR problems, as defined in §2.9.2.5. Whereas in (2.30) the LQR cost was defined

for a particular initial state x(0), in this chapter we define the overall policy cost for a stabilizing controller

K ∈ Rm×n by

J(K) = E
x(0)∼N (0,I)

[
Jx(0)

]
= E

x(0)∼N (0,I)

∫ ∞

0

[
x(t)⊤Qx(t) + u(t)⊤Ru(t)

]
dt,

(6.1)

in other words the expected cost when the initial state is distributed by a unit Gaussian. With this defi-

nition, if P solves the algebraic Riccati equation (2.31) and K is the optimal controller K = −R−1B⊤P ,

then J(K) = tr[P]. Furthermore, if K is an arbitrary stabilizing controller, we have (Mohammadi et al.,

2019):

J(K) = tr[(Q+K⊤RK)W], (6.2)

where

W =

∫ ∞

0
et(A+BK)⊤et(A+BK)dt. (6.3)

W can be computed by solving the Lyapunov equation

(A+BK)⊤W +W (A+BK) + I = 0.

Multi-dynamics LQR A fully general formulation of multi-system LQR would allow variations in each

of (A,B,Q,R), but this creates redundancy. Any LQR problem where Q ≻ 0 is equivalent via change of

131

coordinates to another LQR problem where Q = I and R = I . To reduce redundancy, we consider only

multi-dynamics LQR problems where Q = In×n and R = Im×m in this work. The reference policy class

is linear: Πref = Rm×n.

One way to then define a multi-dynamics LQR problem is by a simple productΦ = A×B for some sets

A ⊆ Rn×n andB ⊆ Rn×m. However, it is not obvious how to designA andB. To support an asymptotic

analysis of N cov
α (Φ), the system space Φ should have a real-valued “breadth” parameter θ that sweeps

from a single system to sets with arbitrarily large, but finite, covering numbers. Matrix norm balls are a

popular representation of dynamics uncertainty in the robust control literature, but they can easily contain

uncontrollable pairs, and removing the uncontrollable pairs can lead to an infinite covering number. For

example, in the scalar problem

A = {a}, B = [−θ, 0) ∪ (0, θ],

where a ̸= 0, it can be shown that no α-suboptimal cover is finite.

These properties are worrying, but the example B is pathological. The zero crossing is analogous

to reversing the direction of force applied by an actuator in a physical system. Allowing B to become

arbitrarily close to zero means the system can become arbitrarily close to uncontrollable. A more relevant

multi-dynamics problem is variations in mass or actuator strength, whose signs are fixed. We formalize

this idea with the following definition.

Definition 6.2.2. Fix A ∈ Rn×n and a breadth parameter θ ≥ 1. LetA = {A} and let

B = {UΣV ⊤ : Σ ∈ Σ}, where Σ = {diag(σ) : σ ∈ [1θ , 1]
d}.

The matrices U ∈ Rn×d and V ∈ Rm×d each have rank d, where 0 < d ≤ min{n,m}. The tuple

(A,U, V, θ) fully defines a multi-system LQR problem in decomposed dynamics form, or DDF problem for

brevity.

132

We will abuse notation and associate Φ with both A × B and Σ when the meaning is clear from

context. The continuity of the LQR cost (6.2) with respect to B and the compactness of Φ for any θ

imply thatN cov
α (Φθ) is always finite. Variations in A are redundant in the scalar case where we focus our

theoretical work in this chapter. The definition can be extended to include them in future work.

x

y

u1
u2

u3
u4

z

φ
θ

ψ

Figure 6.1: Quadrotor helicopter with position states x, y, z, attitude states θ, ϕ, ψ, and per-rotor thrust
inputs u1, u2, u3, u4. The linearized dynamics at hover, subject to variations in mass, geometry, etc., can
be expressed in decomposed dynamics form—see §6.2.

Linearized quadrotor example As an example of a realistic DDF problem, we consider the quadrotor

helicopter illustrated in Figure 6.1. Near the hover state, its full nonlinear dynamics are well approximated

by a linearization. The state is given by x = (x,v, r,ω), where x ∈ R3 is position, v ∈ R3 is linear

velocity, r ∈ R3 is attitude Euler angles, and ω ∈ R3 is angular velocity. The inputs u ∈ R4
≥0 are the

squared angular velocities of the propellers.

Many factors influence the response to inputs, including geometry, mass, moments of inertia, motor

properties, and propeller aerodynamics. These can be combined and partially nondimensionalized into

133

four control authority parameters to form ϕ ∈ Φ. The hover state occurs at x = 0, u ∝ 1, where the

constant input counteracts gravity. The linearized dynamics are given by

ẋ =

0 I 0 0

0 0 G 0

0 0 0 I

0 0 0 0

︸ ︷︷ ︸

A

x+

0 0

êz 0

0 0

0 I

︸ ︷︷ ︸

U

σz

σθ

σϕ

σψ

︸ ︷︷ ︸

Σ

1 1 1 1

1 −1 −1 1

−1 −1 1 1

1 −1 1 −1

︸ ︷︷ ︸

V ⊤

u, G =

0 g 0

−g 0 0

0 0 0

 ,

where g is the gravitational constant and êz = [0 0 1]⊤. The parameters (σz, σθ, σϕ, σψ) denote the

thrust, roll, pitch, and yaw authority constants respectively. Since we use the convention σ ∈ [1θ , 1], the

maximum value of each constant can be varied by scaling the columns of U .

6.3 Related work

Suboptimal coverings are closely related to several topics in control theory. Robust control synthesis under

parametric uncertainty (Dullerud and Paganini, 2000) can be interpreted as seeking a policy that performs

well on all of Φ without observing the particular ϕ ∈ Φ. Most problem formulations in robust synthesis

admit problem instances with no solution; the goal is to find a robust policy if one exists. Gain-scheduled

control considers a multi-system setup identical to ours, while adaptive control control adds the compli-

cation that ϕ is not known to the policy.

Adaptive and gain-scheduled policies of the self-tuning type synthesize a single-system policy after

estimating ϕ, but this relies on the assumption that control synthesis can be computed quickly (Åström

and Wittenmark, 2013). In contrast, methods of the multi-model type use a precomputed set of policies

(Murray-Smith and Johansen, 1997). All multi-model methods impose some kind of coverage condition

on the policy set. In a stable cover, each ϕ ∈ Φ is stabilized by at least one policy. Researchers often

134

focus more on the switching rule than the policy set. For example, Fu and Barmish (1986); Stilwell and

Rugh (1999); Yoon et al. (2007) non-constructively assert the existence of a finite cover by continuity and

compactness arguments. To address the need for small covers, Anderson et al. (2000); McNichols and Fadali

(2003); Tan et al. (2004); Fekri et al. (2006); Du et al. (2012) propose constructive algorithms for various

classes of Φ, sometimes with arguments for minimality but without bounds on the covering number. Jalali

and Golmohammad (2012) bound stability covering numbers in terms of worst-case Vinnicombe metric

distances and sensitivity function norms across the system set. The most closely related work to ours is

from Fu (1996), who shows a tight bound of 2n for the stability covering number of a relatively broad Φ.

This result is complementary to ours: suboptimality is a stronger criterion than stability, but our class of

Φ is more restrictive. We are not aware of prior work that bounds covering numbers in a setup based on

local suboptimality, as opposed to a single global performance measure.

Multi-system control is also a popular topic in deep learning research, where it is often motivated by

ideas of lifelong skill acquisition in robotics. Domain randomization methods follow the spirit of robust

control (Peng et al., 2017), but usually optimize for the average case instead of a worst-case guarantee.

Many methods where the policy observes ϕ use architectural constructs that can only be applied to finite

system sets (Yang et al., 2017; Parisotto et al., 2016; Devin et al., 2017). A common approach for infinite

system spaces is to treat ϕ as a vector input alongside the system state. Yu et al. (2017) and Chen et al. (2018)

use this approach for dynamics parameters; Schaul et al. (2015) use it for navigation goals. There is evidence

that policy class influences these methods: in a recent benchmark (Yu et al., 2019), the concatenated-input

architecture that supports infinite system spaces trails the multi-head architecture that only supports finite

system spaces. Other investigations into the difficulty of learning policies for multi-system control include

methods to condition the multi-system optimization landscape (Yu et al., 2020) or balance disparate cost

ranges (van Hasselt et al., 2016).

135

6.4 Theoretical results

In this section we show logarithmic upper and lower bounds on the growth of N cov
α (Φθ) in θ for scalar

DDF problems. We present several intermediate results in matrix form because they are needed for our

empirical results later. We begin with a key lemma in the framework of guaranteed cost control (GCC) from

Petersen and McFarlane (1994), simplified for our use case.

Lemma 6.4.1 (GCC synthesis, Petersen and McFarlane (1994)). Given the multi-system LQR problem de-

fined by A = {A}, B = {B1∆+B2 : ∥∆∥ ≤ 1}, where B1, B2 ∈ Rm×p are arbitrary for arbitrary p, and

the state cost matrix is Q ≻ 0, if there exists τ > 0 such that P ≻ 0 solves the Riccati equation

A⊤P + PA+ P
(
1
τB1B

⊤
1 − 1

1+τB2B
⊤
2

)
P +Q = 0, (6.4)

then the controller

K = − 1

1 + τ
B⊤

2 P

has cost JB(K) ≤ tr(P) for all B ∈ B. Also, tr(P) is a convex function of τ .

We use the notation P, τ,K = GCC(A,B1, B2, Q) to indicate that P, τ solve (6.4) and K is the cor-

responding controller. It is straightforward to show that any DDF problem can be expressed in the form

required by Lemma 6.4.1 with additional constraints on∆.

In the original presentation, Petersen and McFarlane (1994) treat B1 as given, so they accept that (6.4)

may have no solution. (For example, any time B2 = 0 and A has unstable eigenvalues, due to uncontrol-

lability.) Our application requires constructing values of B1, B2 that guarantee a solution, motivating the

following lemma. We abbreviate the reference text Lancaster and Rodman (1995) as Lan95.

136

Lemma 6.4.2 (existence of α-suboptimal GCC). For the DDF problem (A,U, V, θ), if B ∈ B and α > 1,

then there exists τ > 0 such that the GCC Riccati equation (6.4) with B1 = τB and B2 = B has a solution

(P, τ) satisfying tr[P] ≤ αJ⋆B .

Proof. For this proof, it will be more convenient to write the algebraic Riccati equation as

A⊤P + PA− PDP +Q = 0, (6.5)

where D ⪰ 0. Let D = {D ⪰ 0 : (A,D) is controllable}. Controllability of (A,B) implies that

BB⊤ ∈ D (Lan95, Corollary 4.1.3). Let Ric+ denote the map from D to the maximal solution of (6.5),

which is continuous (Lan95, Theorem 11.2.1), and let

Dα = {D ∈ D : tr[Ric+(D)] < αJ⋆B}.

The setDα is open inD by continuity and is nonempty because it containsBB⊤. Now defineB1(τ) = τB

for τ ∈ (0, 12). The equivalent of D in the GCC Riccati equation (6.4) becomes

D(τ) = − 1
τB1(τ)B1(τ)

⊤ + 1
1+τB2B

⊤
2 = 1−τ−τ2

1+τ BB⊤.

As a positive multiple of BB⊤, we know D(τ) ∈ D, and because limτ→0D(τ) = BB⊤, the set of τ for

which D(τ) ∈ Dα is nonempty. Any such τ and B1(τ) provide a solution.

Finally, the following comparison result will be useful in several places.

Lemma 6.4.3 (ARE comparison lemma). Given two algebraic Riccati equations

A⊤P + PA− PBB⊤P +Q = 0 and Ã⊤P + PÃ− PB̃B̃⊤P + Q̃ = 0,

137

with maximal solutions P and P̃ , let X =
[
Q A⊤

A −BB⊤

]
and X̃ =

[
Q̃ Ã⊤

Ã −B̃B̃⊤

]
. If X⪰X̃ , then P ⪰ P̃ .

Proof. Lan95, Corollary 9.1.6.

6.4.1 Scalar upper bound

We are now ready to bound the covering number for scalar systems. The first lemma bounding J⋆a,b will

be useful for the lower bound also. We then construct a cover inductively.

Lemma 6.4.4. In a scalar LQR problem, if a > 0 and 0 < b ≤ 1, then the optimal scalar LQR cost satisfies

the bounds

2a

b2
< J⋆a,b <

2a+ 1

b2
.

Proof. The closed-form solution for the scalar Riccati equation is

J⋆a,b =
a+
√
a2 + b2

b2
.

The lower bound is immediately visible. The upper bound follows from observing that a2+ b2 ≤ (a+1)2.

Lemma 6.4.5. If p, τ, k = GCC(a, b1, b2, q), then for any β ∈ (0, 1), there exists k′ ∈ R such that

β−2p, τ, k′ = GCC
(
a, βb1, βb2, β

−2q
)
.

Proof. In the scalar system, the GCC matrix Riccati equation (6.4) reduces to the quadratic equation

(
1
τ b

2
1 − 1

1+τ b
2
2

)
p2 + 2ap+ q = 0. (6.6)

138

Substituting p′ = β−2p into (6.6) andmultiplying by β−2 yields a new instance of (6.6) with the parameters

b′1 = βb1, b′2 = βb2, q′ = β−2q, for which p′ is a solution with τ unchanged.

Theorem6.4.6. For the scalar DDF problem defined byA = {a}, where a > 0, andB =
[
1
θ , 1
]
, ifα ≥ 2a+1

2a ,

then N cov
α (B) = O(log θ).

Proof. We construct a cover from the upper end of B. By Lemma 6.4.4, the condition α ≥ 2a+1
2a implies

that J⋆b=1 < α2a < αJ⋆b=1. Therefore, by Lemmas 6.4.1 and 6.4.2, there exists β ∈ (0, 1) and p, τ, k such

that

p, τ, k = GCC
(
a,

1− β
2

,
1 + β

2
, 1

)

and p ≤ α2a. Proceeding inductively, suppose that for N ≥ 1, we have covered [βN , 1] by the intervals

Bn = [βn+1, βn] for n ∈ {0, . . . , N − 1}, and each Bn has a controller kn such that

β−2np, τ, kn = GCC
(
a,
βn − βn+1

2
,
βn + βn+1

2
, β−2n

)
.

Then the existence of the desired BN , kN follows immediately from Lemma 6.4.5.

By Lemma 6.4.3, for each Bn the GCC state cost qn = β−2n ≥ 1 is an upper bound on the cost if we

replace qn with 1 to match the DDF problem. Therefore, for each interval Bn, for all b ∈ Bn,

αJ⋆b ≥ αJ⋆βn > β−2nα2a ≥ β−2np ≥ Jb(kn),

where first inequality is due to Lemma 6.4.3, the second is due to Lemma 6.4.4, the third is by construction

of p, and last is due to the GCC guarantee of kn. Hence,Bn ⊆ Nα(kn). We cover the fullBwhen βN ≤ 1
θ ,

which is satisfied by N ≥ − log θ/ log β.

139

6.4.2 Scalar lower bound

For the matching lower bound, we begin by deriving a simplified overestimate of Nα(k). We then show

that the true Nα(k) is still a closed interval moving monotonically with k. Finally, we argue that the gaps

between consecutive elements of a cover grow at most geometrically, while the range of k values in a cover

must grow linearly with θ.

Lemma 6.4.7. For a scalar DDF problem with a ≥ 1, B = [1θ , 1], for any k < 0, if α ≥ 3/2, then

Nα(k) ⊆ 1
|k| [c1−c2, c1+c2], where c1 and c2 are constants depending on α and a.

Proof. Beginning with the closed-form solution for Jb(k), which can be derived from (6.2), we define

Jb(k) =
1 + k2

−2(a+ bk)
≥ k2

−2(a+ bk)
≜ Jb(k). (6.7)

By Lemma 6.4.4, we have

J⋆b <
3a

b2
≜ J⋆b ,

so r̃ = Jb(k)
/
J⋆b is a lower bound on the suboptimality of k. Computing ∂2r̃/∂b2 shows that r̃ is strictly

convex in b on the domain a + bk < 0, so the α-sublevel set of r̃ is the closed interval with boundaries

where r̃ = α. This equation is quadratic in b with the solutions

b = −a(3α±
√
9α2 − 6α)

k
.

The resulting interval contains Nα(k).

Lemma 6.4.8. For a scalar DDF problem, if α > 1 and k < −1, then Nα(k) is either empty or a closed

interval [b1, b2], with b1 and b2 positive and nondecreasing in k.

140

Proof. The result follows from the quasiconvexity of both the suboptimality ratio Jb(k)/J⋆b and the cost

Jb(k). Showing these requires some tedious calculations and is deferred to §6.6.

Theorem 6.4.9. For a scalar DDF problem defined by a = 1 and B = [1θ , 1], if α ≥ 3/2, then

N cov
α (B) = Ω(log θ).

Proof. From the closed-form solution

k⋆a,b = −
a+
√
a2 + b2

b
,

we observe that k⋆b < −1 for all b ∈ B. This, along with the quasiconvexity of Jb(k) in k, implies that

there exists a minimal α-suboptimal cover C for which all ki < −1. Suppose C = k1, . . . , kN is such a

cover, ordered such that ki < ki+1. Then by Lemma 6.4.8, Nα(ki) and Nα(ki+1) must intersect, so their

overestimates according to Lemma 6.4.7 certainly intersect, therefore satisfying

c1 + c2
−ki+1

≥ c1 − c2
−ki

=⇒ ki+1

ki
≤ c1 + c2
c1 − c2

=⇒ kN
k1
≤
(
c1 + c2
c1 − c2

)N−1

.

By Lemma 6.4.7, to cover b = 1 controller k1 must satisfy k1 ≥ −(c1 + c2), and to cover b = 1
θ , controller

kN must satisfy kN ≤ −θ(c1 − c2). Along with the previous result, this implies

(
c1 + c2
c1 − c2

)N−1

≥ θ c1 − c2
c1 + c2

=⇒ N ≥ log θ

log c1+c2
c1−c2

.

Recalling that c1 and c2 only depend on a and α, the Ω(log θ) dependence on θ is established.

Remarks

• For the upper bound, it may be possible to compute or bound β in the scalar case as a function of a

and α, but the analogous result will likely be harder to obtain in the matrix case.

141

• These results impose a lower bounds on α greater than 1. We believe this is a mild condition in

control applications: if the application demands a suboptimality ratio very close to 1, then the size

of the suboptimal cover is likely to become impractical for storage. However, further theoretical

results building upon suboptimal coverings may require eliminating the bound.

6.5 Empirical results

For matrix DDF problems, we present empirical results as a first step towards covering number bounds.

The proof technique of §6.4 is not easily extended to the d > 1 case. We discuss the difficulties and our in-

termediate results further in §6.7. In this section, we empirically validate a possible cover construction and

use visualization better understand the topological and geometric properties of suboptimal neighborhoods

when d > 1.

6.5.1 Geometric grid construction for upper bounds

We begin by testing a cover construction. If the construction fails to achieve a conjectured upper bound in

a numerical experiment, then either the conjecture is false, or the construction is not efficient. A natural

idea is to extend the geometrically spaced sequence of b values from Lemma 6.4.4 to multiple dimensions.

We now make this notion, illustrated in Figure 6.2, precise.

0.1 0.5 1.0
σ1

0.1

0.5

1.0

σ
2

Figure 6.2: Illustration of geometric grid partition (Definition 6.5.1).

142

Definition 6.5.1 (Geometric grid partition). Given a DDF problem with Σ = [1θ , 1]
d, and a grid pitch

k ∈ N+, select s1, . . . , sk+1 such that s1 = 1
θ , sk+1 = 1, and si+1

si
> 0 is constant. For each j ∈ {1, . . . , k}d,

define the grid cell Σ(j) =
∏d
i=1[sj(i), sj(i)+1], where j(i) is the ith component of j. The cells satisfy

Σ =
⋃
j∈{1,...,k}d Σ(j), thus forming an partition (up to boundaries) of Σ into kd cells.

6.5.1.1 Empirical upper bound on N cov
α (Φ).

100 101 102

θ

1

5

10

gr
id

pi
tc
h
k

log

Figure 6.3: Empirical upper bound on grid pitch k needed to construct geometric grid covering of linearized
quadrotor using GCC synthesis.

In this experiment, we construct 2-suboptimal covers of the linearized quadrotor for varying θ using

geometric grids. We begin with the guess k = 1. For each grid cell Σ(j), we compute a controller K(j)

using GCC synthesis and check ifΣ(j) ⊆ N2(K(j)). (This requires evaluating only one Lyapunov equa-

tion due to Lemma 6.4.3.) If not, we increment k and try again. Termination is guaranteed by continuity.

Results for this experiment with θ ∈ [1, 100] are shown in Figure 6.3. The required grid pitch k follows

roughly logarithmic growth, as indicated by the linear least-squares best-fit curve in black. Small values

of θ are excluded from the fit (indicated by black markers), as we do not expect the asymptotic behavior

to appear yet.

143

These results do not rule out the log(θ)d growth suggested by the geometric grid construction. Testing

larger values of θ is computationally difficult because the number of grid cells becomes huge and the GCC

Riccati equation (6.4) becomes numerically unstable for very small Σ.

6.5.1.2 Efficiency of geometric grid partition.

1
1 1
0

σ
4

1.9 1.8

1.9 1.8

σ2 = 1
10

1.8 1.4

1.8 1.5
σ
1
=
1

σ2 = 1

1
10

1

σ3

1
1 1
0

σ
4

1.9 1.8

2 1.9

1
10

1

σ3

1.8 1.5

1.9 1.6

σ
1
=

11
0

Figure 6.4: Suboptimality ratios for corner cells in geometric grid covering of linearized quadrotor.

Given an α-suboptimal geometric grid cover, we examine a measurable quantity that may reflect the

“efficiency” of the cover. Intuitively, in a good cover we expect the worst-case suboptimality ratio of each

controllerK(j) relative to its grid cellΣ(j) to be close to α. If it close to α for some cells but significantly

less thanα for others, then the grid pitch around the latter cells is finer than necessary. We visualize results

for this computation on the linearized quadrotor with θ = 10, k = 4 in Figure 6.4 — only the corners of

the 4 × 4 × 4 × 4 grid are shown. The suboptimality ratio is close to α = 2 for cells with low control

authority (near Σ = 1
θ I), but drops to around 1.4 for cells with high control authority (near Σ = I). The

difference suggests that the geometric grid cover could be more efficient in the high-authority regime.

6.5.1.3 Efficiency of GCC synthesis.

One possible source of the conservativeness of GCC in the high-authority regime is that Lemma 6.4.1

applies to the affine image of a m× n-dimensional matrix norm ball, but we only require guaranteed

144

0.03

1

σ
2

α = 1.05 α = 1.1

A = I

α = 1.35

0.03 1
σ1

0.03

1

σ
2

0.03 1
σ1

0.03 1
σ1

A = 1
n
1

Figure 6.5: α-suboptimal neighborhoods for geometric grid partition in 2D system. Top: minimum cou-
pling;A = I . Bottom: maximum coupling;A = 1

n1. Columns: varying suboptimality threshold α. All axes
are logarithmic. Colors have no meaning. Discussion in §6.5.2.

cost on a d-dimensional affine subspace of matrices. In other words, we ask GCC synthesis to ensure

α-suboptimality on systems that are not actually part of Φ. If this is negatively affecting the result, then

we should observe that the worst-case cost ofK(j) onΣ(j) is less than the trace of the solution P for the

GCC Riccati equation (6.4). The worst-case cost always occurs at the minimal Σ ∈ Σ(j) by Lemma 6.4.3;

we evaluate it with (6.2). For the quadrotor, a mismatch sometimes occurs for smaller values of θ, but it

does not occur for the large values of θ.

6.5.2 Suboptimal neighborhood visualizations

We now present intuition-building experiments towards a covering number lower bound for matrix DDF

problems. A lower bound requires a class of DDF problem that can be instantiated for any dimensionality

d. Two “extremal” systems come to mind: minimum coupling, whereA = I , andmaximum coupling, where

A = 1
n1. Note that for minimum coupling, anα-suboptimal policy is not necessarilyα-suboptimal on each

scalar subsystem – if it were, the lower bound log(θ)d would trivially follow from the results in §6.4.

145

Figure 6.6: α-suboptimal neighborhoods for the three-dimensional decomposed dynamics system with
minimal coupling (A = U = V ⊤ = I3×3) and breadth θ = 100. Neighborhoods shown for α ranging
from 1.04 to 1.2 with a fixed controller.

We show approximate suboptimal neighborhoods for a two-dimensional system in Figure 6.5. We

select a geometric grid of Σ values (indicated by the circular markers) and synthesize their LQR-optimal

controllers. Then, we evaluate the suboptimality ratio of each controller on a finer grid of Σ values to get

approximate neighborhoods, indicated by the semi-transparent regions. We repeat this experiment with

three values of α for both choices of A.

Interestingly, the neighborhoods for A = I are not always connected. In the plot for α = 1.05 (far

left), the neighborhood for the minimal Σ has another component that overlaps other neighborhoods to

its top and right. If we increase to α = 1.1, the components join into an “L”-shaped region. In contrast,

the neighborhoods for A = 1
n1 seem more well-behaved. For both choices of A, the neighborhoods are of

comparable size.

To verify that this behavior is not an artifact of the two-dimensional case only, we repeat the experi-

ment in three dimensions. Figure 6.6 shows neighborhoods of one controller K = K⋆
(2/θ)I for α ranging

from 1.04 to 1.2. As α grows, Nα(K) shows similar topological phases as the 2D case. In the simply-

connected phase (large α), the neighborhood appears to include any Σ where at least one σi is sufficiently

small. If this property holds in higher dimensions, then it would be possible to construct a cover using

only controllers of uniform gain in all dimensions for large α.

146

6.6 Proof of Lemma 6.4.8

We first present some supporting material. The following facts about scalar LQR problems can be derived

from the LQR Riccati equation and some calculus (not shown).

Lemma 6.6.1. For the scalar LQR problem with a > 0, b > 0 and q = r = 1, the optimal linear controller

k⋆a,b is given by the closed-form expression

k⋆a,b = min
k∈R

Ja,b(k) = min
k∈R

1 + k2

−2(a+ bk)
= −a+

√
a2 + b2

b
.

For fixed a, the map from b to k⋆a,b is continuous and strictly increasing on the domain b ∈ (0,∞) and has the

range (−∞,−1). For any k ∈ (−∞,−1), there exists a unique bk ∈ (−∞,−1) for which k = k⋆a,bk , given

by

bk =
2ak

1− k2
.

We now recall the statement of the lemma.

Lemma 6.4.8. For a scalar DDF problem, if α > 1 and k < −1, then Nα(k) is either empty or a closed

interval [b1, b2], with b1 and b2 positive and nondecreasing in k.

Instead of a monolithic proof, we present supporting material in Lemmas 6.6.2 and 6.6.3. We then show the

main result in Lemma 6.6.4, which considers α-suboptimal neighborhoods on all of R instead of restricted

to B. Lemma 6.4.8 will follow as a corollary.

We proceedwithmore setup. Recall that the scalar DDF problem is defined byA = {a} andB = [1θ , 1],

where a > 0. For this section, let

D = {(b, k) ∈ (0,∞)× R : a+ bk < 0}

147

(note that Jb(k) < ∞ ⇐⇒ a + bk < 0). Denote its projections by Db(k) = {b : (b, k) ∈ D} and

Dk(b) = {k : (b, k) ∈ D}. We compute the suboptimality ratio r : D 7→ R by

r(b, k) =
Jb(k)

J⋆b
=

1 + k2

−2(a+ bk)

/
a+
√
a2 + b2

b2
=

(1 + k2)b2

−2(a+ bk)(a+
√
a2 + b2)

.

We denote its sublevel sets with respect to b for fixed k by

Dbα(k) = {b ∈ Db(k) : r(b, k) ≤ α}.

Lemma 6.6.2. For fixed k < 0, the ratio r(b, k) is quasiconvex on Dbk, and there is at most one b ∈ Dbk at

which ∂r/∂b = 0.

Proof. By inspection, r(b, k) is smooth on Db. We now show that the second-order condition of

Lemma 2.4.4(b) holds. To solve ∂r/∂b = 0 for b, we multiply ∂r/∂b (not shown due to length) by the

strictly positive factor
2 (a+ bk)2

(
a+
√
a2 + b2

)2√
a2 + b2

ab (k2 + 1)

and set the result equal to zero to get the equation

2a2 + abk + b2 = (−2a− bk)
√
a2 + b2.

Squaring both sides (which may introduce spurious solutions) and collecting terms yields the equation

−2ak − bk2 + b = 0, with the solution b = 2ak
1−k2 . This is the expression for bk from Lemma 6.6.1. Note

that it is only positive for k < −1. If k ∈ [−1, 0), then there are no stationary points in Dbk. Otherwise,

substitution into ∂r/∂b confirms that this solution is not spurious, so it is the only stationary point of r

148

with respect to b. We now must check the second-order condition for k < −1. Evaluating ∂2r/∂b2 (not

shown due to length) and multiplying by the strictly positive factor

−

(
a+
√
a2 + b2

)
(2a+ 2bk)

k2 + 1
,

we have

sign

(
∂2r

∂b2

)
= sign

 b4(
a+
√
a2 + b2

)
(a2 + b2)

3
2

+
2b4(

a+
√
a2 + b2

)2
(a2 + b2)

+

2b3k

(a+ bk)
(
a+
√
a2 + b2

)√
a2 + b2

+
2b2k2

(a+ bk)2
− 5b2(

a+
√
a2 + b2

)√
a2 + b2

− 4bk

a+ bk
+ 2

 .

Evaluating at the stationary point bk, this reduces to

sign

(
∂2r

∂b2

)∣∣∣∣
bk,k

= sign

(
2k2 (k − 1)2 (k + 1)2

(k2 + 1)3

)
. (6.8)

Recalling that k < −1, the sign is positive. The conclusion follows from Lemma 2.4.4(b).

Lemma 6.6.3. For fixed b, the cost Jb(k) is quasiconvex on Dk(b). Also, Jb(k) is not monotonic, so case 3. of

Lemma 2.4.4(a) applies.

Proof. We have

Jb(k) =
1 + k2

−2(a+ bk)
.

The numerator is nonnegative and convex on k ∈ R. The denominator is linear (hence concave) and

positive on Dk(b). Quasiconvexity follows from Lemma 2.4.4(c). Nonmonotonicity follows from the fact

that Jb(k) is smooth onDk(b) and has a unique optimum at k⋆b , which is not on the boundary ofDk(b).

We now combine these into the main result.

149

Lemma 6.6.4. For a scalar DDF problem, if α > 1 and k < −1, then Dbα(k) is either: a bounded closed

interval [b1, b2], with b1 and b2 increasing in k, or a half-bounded closed interval [b1,∞), with b1 increasing

in k.

Proof. By Lemma 6.6.2, due to quasiconvexity Dbα is convex. The only convex sets on R are the empty set

and all types of intervals: open, closed, and half-open. We know Dbα is not empty because it contains bk.

We can further assert that Dbα has a closed lower bound because limb→(−a/k) r(b, k) = ∞ (see Boyd and

Vandenberghe (2004, §A.3.3) for details). However, the upper bound may be closed or infinite. We handle

the two cases separately.

Bounded case. Fix k0 < −1. Suppose Dbα(k0) = [b1, b2] for 0 < b1 < b2 < ∞. By the implicit

function theorem (IFT), at any (b0, k0) satisfying r(b0, k0) = α, if ∂r/∂b|b0,k0 ̸= 0 then there exists an

open neighborhood around (b0, k0) for which the solution to r(b, k) = α can be expressed as (g(k), k),

where g is a continuous function of k and

∂g(k)

∂k

∣∣∣∣
k0

= −
(
∂r

∂b

)−1 ∂r

∂k

∣∣∣∣∣
b0,k0

.

By the continuity and quasiconvexity of r, and the fact that ∂r/∂b = 0 only at bk (Lemma 6.6.2) we know

that r(b1, k0) = r(b2, k0) = α and

∂r

∂b

∣∣∣∣
b1,k0

< 0 and ∂r

∂b

∣∣∣∣
b2,k0

> 0.

By Lemma 6.6.1, since k < −1 there exists bk > 0 satisfying k = k⋆bk . Since r(bk, k) = 1 and

α > 1, we know bk0 ∈ (b1, b2). Again by Lemma 6.6.1, the map from b to k⋆b is increasing in b.

150

Therefore, k⋆b1 < k0 < k⋆b2 . By the quasiconvexity and nonmonotonicity of Jb(k) from Lemma 6.6.3, via

Lemma 2.4.4(a) we have

∂r

∂k

∣∣∣∣
b1,k0

≥ 0 and ∂r

∂k

∣∣∣∣
b2,k0

≤ 0.

Therefore, the functions g1, g2 satisfying the conclusion of the IFT in the neighborhoods around (b1, k0)

and (b2, k0) respectively also satisfy

∂g1(k)

∂k

∣∣∣∣
b1,k0

≥ 0 and ∂g2(k)

∂k

∣∣∣∣
b2,k0

≥ 0.

Therefore, b1 and b2 are locally nondecreasing in k.

Unbounded case. Suppose Dbα(k) = [b1,∞) for b1 <∞. By the same IFT argument as in the bounded

case, b1 is increasing in k. By the quasiconvexity of r in b, the value of r is increasing for b > bk, but

the definition of Dbα(k) implies that r(b, k) ≤ α for all b > bk. Therefore, limb→∞ r(b, k) exists and is

bounded by α. In particular,

lim
b→∞

r(b, k) = lim
b→∞

(1 + k2)b2

−2(a+ bk)(a+
√
a2 + b2)

= lim
b→∞

(1 + k2)b2/b2

−2(a+ bk)(a+
√
a2 + b2)/b2

= −1 + k2

2k
.

Taking the derivative shows that this value is decreasing in k for k < 0. Therefore, if k < k′ < 0 then

lim
b→∞

r(b, k′) ≤ lim
b→∞

r(b, k) ≤ α.

The property that r(b, k′) is increasing in b for b > bk further ensures that r(b, k′) ≤ α for all b > bk.

Therefore, Dbα(k′) is also unbounded.

151

For completeness, we prove Lemma 6.4.8.

Proof. (of Lemma 6.4.8). By Lemma 6.6.4, Dbα(k) is either a bounded closed interval [b1, b2], with b1 and b2

increasing in k, or a half-bounded closed interval [b1,∞), with b1 increasing in k. Recall that Nα(k) =

Dbα(k) ∩ B with B = [1θ , 1]. Therefore, the half-bounded case can be reduced to the bounded case with

b2 = 1. The intersection can be expressed as

Nα(k) = [max{b1, 1θ},min{b2, 1}],

where the interval [a, b] is defined as the empty set if a > b. Taking the maximum or minimum of a

nonstrict monotonic function and a constant preserves the monotonicity, so we are done.

152

6.7 Efforts towards matrix case

In this section, we present intermediate results in our effort to prove or disprove the following conjecture:

Conjecture 6.7.1. For a general DDF problem as defined in Definition 6.2.2 with rank d and breadth θ,

N cov
α (B) ∈ O(dlog θ).

This conjecture is not particularly strong – essentially, it posits that the covering number may suffer

from a “curse of dimensionality” with respect to d, but the dependency on θ matches that of the scalar

case. We also visualize suboptimal neighborhoods for multi-system LQR problems where the variations

are in the A matrix instead of the B matrix.

To prove an upper bound for the matrix case using the geometric grid construction (Definition 6.5.1)

with a similar proof technique to that of Theorem 6.4.6, the key obstacle appears to be Lemma 6.4.5. The

proof of Lemma 6.4.5 relies on commutativity of scalar multiplication, which no longer holds in the matrix

case.

6.7.1 Easy case: Scalar multiples of B

As an intermediate step towards Conjecture 6.7.1, we can address the case where A is arbitrary butB is a

one-dimensional subspace as in the scalar case. To be precise, letB = {σB0 : σ ∈ [1θ , 1]}. It turns out that

this case is not much more difficult than the scalar case, even though the unforced dynamics ẋ = Ax can

exhibit oscillation due to complex eigenvalues, may contain a mixture of stable and unstable eigenvalues,

and so on.

Whereas the proof for Theorem 6.4.6 relied on the closed-form solution for optimal LQR cost, here we

will use a less constructive method. Our proof will require a more generic lower limit of α, of which the

constraint α ≥ 2a+1
2a for the scalar setting was a special case. In what follows, we will use the notation

[s, t]B = {σB : σ ∈ [s, t]}

153

and refer to such a set as an “interval”. For legibility, when referring to an LQR problem (A,B,Q,R)with

variations in matrices other than B, we will also use the notation J⋆(A,B,Q,R) instead of the notation

J⋆A,B,Q,R for the LQR problem’s optimal cost. We begin with the following generalization of Lemma 6.4.5:

Lemma 6.7.2. For (A,B) controllable and Q ⪰ 0, if P0 is the maximal solution of the ARE

A⊤P + PA− PBB⊤P +Q = 0

associated with the LQR problem (A,B,Q, I), then for any β > 0, the matrix β−2P0 solves the ARE

A⊤P + PA− β2PBB⊤P + β−2Q = 0, (6.9)

and is the unique optimal cost matrix for the LQR problem defined by (A, βB, β−2Q, I).

Proof. It is easy to see that β−2P0 solves the ARE (6.9). In general, AREs may have more than one positive

semidefinite solution, and we would need to show that β−2P0 is maximal to ensure that it actually rep-

resents the LQR optimal cost matrix. However, for AREs defined by well-posed LQR problems, it can be

shown that the LQR cost matrix is the unique positive semidefinite solution of the associated ARE (Lan95,

Theorem 16.3.3). Therefore, we are assured that β−2P0 is also the LQR cost matrix.

Theorem 6.7.3. For the multi-system LQR problem defined byA = {A} andB = [1θ , 1]B0, where (A,B0)

is controllable, with fixed cost matrices Q ≻ 0 and R = I , if there exists a constant c such that

J⋆(A,B, sQ, sI) ≤ cJ⋆(A,B,Q, sI)

for all s > 0, then if α > c, we have N cov
α (B) = O(log θ).

154

Proof. Let P0 denote the solution to the ARE

ATP + PA− PB0B
T
0 P +Q = 0, (6.10)

so that J⋆B0
= tr(P0). By Lemmas 6.4.1 and 6.4.2, there exists β ∈ (0, 1) and PGCC , τ,K such that

PGCC , τ,K = GCC
(
A,

1− β
2

B0,
1 + β

2
B0, Q

)
(6.11)

and tr(PGCC) ≤ α
c J

⋆
B0

. Then for all B ∈ [β, 1]B0, we have

JB(K) ≤ tr(PGCC) ≤
α

c
J⋆B0
≤ α

c
J⋆B,

where the first inequality follows from the definition of GCC synthesis and the last inequality follows from

the ARE comparison lemma (Lemma 6.4.3).

Now let us consider covering [βN , 1]B0 by the intervals {Bn}N−1
n=0 , where Bn = [βn+1, βn]B0. By

applying Lemma 6.7.2 to the Riccati equation (6.10) we find that

J⋆(A, βnB0, β
−2nQ, I) = β−2n tr(P0) = β−2nJ⋆B0

.

Invoking Lemma 6.7.2 on the GCC Riccati equation (6.4) with the base case of (6.11) yields a controllerKn

for each Bn such that

β−2nPGCC , τ,Kn = GCC
(
A,

βn − βn+1

2
B0,

βn + βn+1

2
B0, β

−2nQ

)
.

155

The ARE comparison lemma with respect to the state cost matrix then implies that, for all B ∈ Bn,

JB(Kn) ≤ β−2n tr(PGCC).

Putting it all together, for each Bn andKn, we have

JB(Kn) ≤ β−2n tr(PGCC) ≤ β−2nα

c
J⋆B0

=
α

c
J⋆(A, βnB0, β

−2nQ, I) ≤ αJ⋆(A, βnB0, Q, I) ≤ αJ⋆B

for all B ∈ Bn, where the second-to-last inequality is due to the hypothesis and the last is due to the ARE

comparison lemma. Therefore, Bn ⊆ Nα(Kn). We cover the full B when βN ≤ 1
θ , which is satisfied by

N ≥ − log θ/ log β. Recalling that the original choice of β did not depend on θ, we are done.

In the next section, we elaborate on the cost ratio limit c in the hypothesis of Theorem 6.7.3 and how

it differs between the scalar and matrix cases.

6.7.2 Role of α’s lower bound

We have been focusing on what happens asB is scaled down towards zero. From the LQR Riccati equation

(2.31), we can see that scaling down B gives the same ARE solution as scaling up the control cost R. To

be precise,

J⋆(A, 1sB,Q,R) = J⋆(A,B,Q, s2R)

for any s ̸= 0. However, in our proof for the scalar case, we do something equivalent to

J⋆(A, 1sB,Q,R) = J⋆(A,B,Q, s2R) ≤ J⋆(A,B, s2Q, s2R). (6.12)

156

The role of α is to accommodate for the looseness of that inequality. In the scalar case we (implicitly)

proved that the ratio

J⋆(A,B, sQ, sR)

J⋆(A,B,Q, sR)
(6.13)

never gets bigger than (2a + 1)/2a. In Figure 6.7, we plot the ratio from Equation (6.13) for the scalar

system when a = 1. It converges to a value slightly larger than 1.2.

100 101 102 103 104

s

1.0

1.1

1.2

J⋆(a, b/s, q, r)

J⋆(a, b/s, s2q, r)

Figure 6.7: “Approximation error” accounted for by α > 2a+1
2a assumption in scalar upper bound proof.

We can also plot the ratio from Equation (6.13) for non-scalar LQR problems. We sample random A

and B matrices with dimensions 2 ≤ n,m ≤ 10 and entries i.i.d. normally distributed. We reject samples

where ρ+(A) ≤ 0. Otherwise, we scale A such that ρ+(A) = 1, and scale B such that ∥B∥2,2 = 1. These

plots are shown in Figure 6.8.

100 101 102 103 104

s

100

101

102

J⋆(A, 1sB,Q,R)

J⋆(A, 1sB, s
2Q,R)

Figure 6.8: Looseness introduced by the inequality (6.12) for random LQR problems.

157

In Figure 6.8, we see that the ratio of Equation (6.13) still appears to converge to a finite value for

these examples, but it can be much bigger than 1.2. This explains the constant c in the hypothesis of

Theorem 6.7.3. The large values seen in Figure 6.8 make this constraint unsatisfying, because a guarantee

that only holds for a suboptimality ratio α ≫ 1 is unlikely to be useful in practice. On the other hand, it

seems possible that the asymptotic dependence on θ obtained from adding this constraint would not be

any different from the true dependence for arbitrary α.

The existence of such a constant c is of course not guaranteed. Based on the empirical behavior in

Figure 6.8, we conjecture that it does exist:

Conjecture 6.7.4. For any well-posed LQR problem (A,B,Q,R), there exists a constant c such that

J⋆(A,B, sQ, sI) ≤ cJ⋆(A,B,Q, sI)

for all s > 0.

6.7.3 Form of Riccati perturbation for geometric grid recursion

If we are to use a grid-based construction to prove an upper bound on the suboptimal covering numbers

for DDF problems, it will likely involve some kind of induction or dynamic programming-style recursion.

If we again start from the Σ = I case and move “down” to less control authority, then we will be recursing

from B = UΣV ⊤ to B′ = UΣ′V ⊤ with Σ ≻ Σ′. If we consider stepping from one grid cell to its face-

sharing neighbors, then only one element of Σ′ will change. Without loss of generality, we may assume

that element Σ1,1 is the one changing.

Since only one element of Σ′ changes, the change to B is a rank-one update. It is not immediately

clear if this is useful.

158

In the scalar case of §6.4 and the one-dimensional subspace case of §6.7.1, we performed a series of

algebraicmanipulations on the Riccati equation for the optimal cost of the systemwithB′ to arrive at a new

value of the cost matrix P ′ expressed in terms of the solution P for the system with B. Unfortunately, we

were not able to use such a simple approach for the matrix case. We attempted representing the changes in

B, P, Q as both additive andmultiplicative perturbations. Ultimately they both failed due to the structural

difference between theA⊤P +PA term and the PBB⊤P term in the Riccati equation. We present details

in the next two subsubsections.

6.7.3.1 Multiplicative change in P

Recall we are trying to recurse from a solution for the Riccati equation

A⊤P + PA− PBB⊤P +Q = 0 (6.14)

to a solution for the Riccati equation

A⊤P + PA− PB′B′⊤P +Q = 0,

with B′ as described in §6.7.3. Let us first consider the simple case where d = n and U = V = In×n. We

use the notation Σ′ =MΣ, whereM ⪯ I is diagonal and positive definite, to express the change in Σ as

a multiplicative perturbation. The new Riccati equation then becomes

A⊤P ′ + P ′A− P ′MΣΣMP ′ +Q′ = 0.

Our initial hope might be to follow the scalar case and test if something like

P ′ =M−1PM−1, Q′ =M−1QM−1

159

works. This proposed solution converts the Riccati equation above to

A⊤M−1PM−1 +M−1PM−1A−M−1PΣΣPM−1 +M−1Q′M−1 ?
= 0. (6.15)

But now, to follow the same pattern as the scalar case, we want to perform some algebraic manipulation

to get rid of all instances ofM and arrive back at the hypothesis (6.14), thus showing that eq. (6.15) holds.

This does not seem possible.

6.7.3.2 Additive change in P

Now we will write the perturbation toB as additive instead of multiplicative. Suppose we have solved the

Riccati equation

A⊤P + PA− PBB⊤P +Q = 0

for P . Now we recurse from B to B′ = B −∆B such that BB⊤ ⪰ B′B′⊤ (and therefore ∆B ⪰ 0). We

are interested in the solution P ′ for the Riccati equation

A⊤P ′ + P ′A− P ′B′B′⊤P ′ +Q = 0.

Due to the ARE comparison lemma (Lemma 6.4.3), we know that P ′ ⪰ P . If we write P ′ = P + S with

S ⪰ 0, we get the Riccati equation

A⊤(P + S) + (P + S)A− (P + S)B′B′⊤(P + S) +Q = 0.

160

Expanding certain terms gives us

A⊤P + PA+A⊤S + SA− (PBB⊤P − PB∆B⊤P − P∆BB⊤P + P∆B∆B⊤P)

−PB′B′⊤S − SB′B′⊤P − SB′B′⊤S +Q = 0.

Subtracting the original Riccati equation yields

A⊤S + SA− (−PB∆B⊤P − P∆BB⊤P + P∆B∆B⊤P)

−PB′B′⊤S − SB′B′⊤P − SB′B′⊤S = 0.

Now if we define A′ = A−B′B′⊤P and group like terms with respect to S, we get

A′⊤S + SA′ − SB′B′⊤S + P (BB⊤ −B′B′⊤)P = 0.

So we have an expression for the change in cost as the solution to another Riccati equation. Regarding the

expression

A′ = A−B′B′⊤P,

we note that the optimal controller for the original problem was K = −B⊤P , so this term is closely

related to A + BK , that is, the closed loop dynamics of the original system with its optimal controller.

Therefore, by some continuity or gain margin argument, we may be able to argue that A′ is Hurwitz. This

could be useful.

161

6.7.4 How we would use bounds on cost change due to B perturbations

Although we have not yet derived any useful results about the cost change resulting from a change to B

as described in §6.7.3, let us look ahead and think about how such a result might be used by the full proof

if we follow the geometric grid construction. Suppose we have a result like:

If P solves the ARE

A⊤P + PA− PUΣV ⊤V ΣU⊤P +Q = 0

and Σ′ = diag(1, . . . , 1, βi, 1, . . . , 1)Σ for βi < 1, then the solution P ′ to the ARE

A⊤P + PA− PUΣ′V ⊤V Σ′U⊤P +Q = 0

satisfies

tr[P ′] ≤ β−2
i ci tr[P],

where P ′ is the solution to the ARE for the new Riccati equation and ci > 0 and βi ∈ (0, 1)

are some constants specific to the ith dimension of Σ.

The constants c1, . . . , cd and β1, . . . , βd should be allowed to depend on A,U, V in arbitrarily complex

ways, but they need to be constant.

Following the template for the proof of Theorem 6.7.3, we need to obtain two quantities for each cell

of the geometric grid:

• An upper bound on the numerator of the suboptimality ratio, which comes from a GCC Riccati

equation, and

• A lower bound on the denominator of the suboptimality ratio, which comes from a standard LQRRic-

cati equation applied to the “worst-case”B in the grid cell, which can be selected using Lemma 6.4.3.

162

In the scalar case, the numerator upper bound came from induction but the denominator lower bound

came from the closed-form solution of the scalar Riccati equation. Since there is no closed-form solution

for the matrix case, we will likely need some kind of inductive argument for the lower bound as well.

6.7.5 Existing Riccati solution and perturbation bounds

There are many published bounds on spectral properties of either 1) solutions to the ARE, or 2) changes in

the solution to an ARE caused by perturbations to its matrix coefficients. Most of these results appear to be

very general bounds phrased in terms of properties likematrix norms andminimum/maximum eigenvalues

of the matrix coefficients (or their perturbations). It is not clear if any of these bounds are fine-grained

enough to be useful with the highly structured setup of rank-one perturbations to B, that we would need

to handle in the geometric grid construction for an upper bound on α-suboptimal covering numbers for

DDF problems.

Wang et al. (1986) give some fairly easy-to-derive and user-friendly bounds under strong assumptions

on A:

Lemma 6.7.5 (Theorems 1 and 2, Wang et al. (1986)). For the algebraic Riccati equation

A⊤P + PA− PRP +Q = 0

where A is Hurwitz, the positive semidefinite solution P satisfies

tr(P) ≤
λmax(As) +

√
λmax(As)2 + (λmin(R)/n) tr(Q)

λmin(R)/n
(6.16)

and

tr(P) ≥
λmin(As) +

√
λmin(As)2 + λmax(R) tr(Q)

λmax(R)
, (6.17)

163

where As = (A⊤ +A)/2.

Note that in Lemma 6.7.5, the λmax and λmin functions are only applied to symmetric matrices, so they

are only comparing real eigenvalues. Regarding the requirement that A is Hurwitz, we note that the A′ in

the Riccati equation of §6.7.3.2, whose solution tells us the how much the cost has changed additively, is

Hurwitz.

Many other Riccati bounds have been published. Bounds on various properties of the solution are

collected in the survey of Kwon et al. (1996). Perturbation bounds are given by Konstantinov et al. (2003)

and Sun (1998), among many others.

6.7.6 Lower bound candidates

For a lower bound on the covering number, we may need as a lemma some overestimate of suboptimal

neighborhoods, containing them into sets that are easy to work with like boxes, balls, etc. Overestimating

suboptimal neighborhoods requires underestimating suboptimality ratio. Underestimating suboptimality

ratios requires overestimating J⋆B and underestimating JB(K) for arbitraryK .

6.7.6.1 Lower bound for A = I

Although the lower bound candidate A = I leads to complicated topology of suboptimal neighborhoods,

as discussed in § 6.5.2, it is easier to work with algebraically than the candidate A = 1
n1. We therefore

begin our attempt to find a covering number lower bound usingA = I , even though it may lead to a loose

bound, so that we can get any bound at all (beyond the trivial dimension-independent lower bound we get

from the scalar case).

Overestimating J⋆B Let P denote the unique positive definite solution for the ARE

AP + PA− PBBTP + I = 0,

164

in which A = I and B = diag(σ1, . . . , σn) ≻ 0. Then P is a diagonal matrix with entries

Pii =
1 +

√
1 + σ2i

σ2i
,

where the entry Pii corresponds to the optimal scalar cost for the scalar LQR system with a = 1 and

b = σi, as discussed in §6.4. An easy calculation verifies that the proposed P solves the given ARE. We

see that P ≻ 0 by construction, so P is the unique positive definite solution (Lan95, Theorem 16.3.3). The

resulting optimal controllerK⋆
B = −BTP is diagonal with

(K⋆
B)ii =

1 +
√
1 + σ2i

σi
.

We can simplify the result for P by applying Lemma 6.4.4, concluding that

tr(P) ≤ 3
n∑
i=1

1

σ2i
. (6.18)

As in the scalar case, as the σi approach zero asymptotically this “user-friendly” upper bound becomes

tight up to the constant factor.

Underestimating JB(K). We have to account for the possibility that a suboptimal covering contains

non-diagonalK’s. However, for now we make the following conjecture:

Conjecture 6.7.6. For the DDF problem defined by Φ with A = I and U = V = I , if the controller

K ∈ Rn×n is not diagonal, then there exists a diagonalKd such that Nα(K) ⊆ Nα(Kd).

165

If Conjecture 6.7.6 is true, then we can assume any suboptimal covering C for this problem is composed

entirely of diagonal controllers. We can then again build upon the scalar results by invoking Lemma 6.4.7.

This gives us the following expression for diagonalK :

JB(K) = −
n∑
i=1

1 +K2
ii

2(1 + σiKii)
≥ −

n∑
i=1

K2
ii

2(1 + σiKii)
.

Suboptimality ratio. These two bounds leave us with an optimistic suboptimality ratio estimate which

we denote as r̂:

JB(K)

J⋆B
≥ r̂ =

n∑
i=1

K2
ii

1 + σiKii

−6
n∑
i=1

1

σ2i

.

This ratio-of-sums-of-ratios structure is challenging to work with. Considering that the shapes of the α-

suboptimal neighborhoods for this system in Figure 6.5 do not appear easy to approximate, we did not

devote further to working with this estimate.

6.7.6.2 Lower bound for A = 1
n1

For the case A = 1
n1, we can no longer easily build upon the results from the scalar case. To upper-bound

J⋆B , we would like to start by applying the upper bound of Lemma 6.7.5, but we cannot do it immediately

because 1
n1 is not Hurwitz. However, Wang et al. (1986) do not clearly state where the stability of A is

used in their proof of Lemma 6.7.5. Further investigation is required.

6.7.7 Packing-based strategies for lower bounds

In more well-known (often geometric) covering problems based on metrics/norms, the notion of coverings

is closely related to the notion of packings. We can also consider packings for our problem.

166

Definition 6.7.7. Consider a multi-system optimal control problem (X ,U ,Φ,Πref) and a suboptimality

ratio α > 1. Given a system ϕ ∈ Φ, we define its α-suboptimal policy neighborhood as

Pα(ϕ) =

{
π ∈ Πref :

Jϕ(π)

J⋆ϕ
≤ α

}
.

A set of systems P ⊆ Φ is an α-suboptimal packing of Φ if its corresponding family of α-suboptimal

policy neighborhoods {Pα(ϕ)}ϕ∈P is pairwise disjoint.

The α-suboptimal packing number of Φ, denoted Npack
α (Φ), is the size of the largest α-suboptimal

packing of Φ.

It is clear that Npack
α (Φ) ≤ N cov

α (Φ). Constructing a α-suboptimal packing could be a useful strategy

for covering number lower bounds. With packings we have a “for all” condition with respect to the subop-

timality ratio of arbitrary controllers for a finite set ofBs. As discussed in §2.9.1.6, the cost of an arbitrary

suboptimal controllerK for a particular B depends on the solution to the (linear) Lyapunov equation

(A+BK)X +X(A+BK)⊤ + I = 0

and is given by

J(K) = tr
[
(Q+K⊤RK)X

]
. (6.19)

On the other hand, the optimal cost for a particular B depends on the solution to the (quadratic) algebraic

Riccati equation

A⊤P + PA− PBR−1B⊤P +Q = 0,

but the optimal cost is simply

J⋆B = tr[P].

167

So for suboptimal costs we have a simpler matrix equation, butK appears both in the equation coefficients

and in a product with the solution to get the final cost. It is not clear which is easier to work with.

6.7.8 Reparameterization

The LQR cost is not a convex function of the controller matrix K , but it can be rendered convex by a

reparameterization. We follow the presentation of Mohammadi et al. (2019). Let Y = KX where X ≻ 0.

SubstitutingK = Y X−1 into (6.19) yields

J(X,Y) = tr
[
QX + Y ⊤RYX−1

]
,

where X solves the same Lyapunov equation as before, which under our reparameterization becomes

AX +XA⊤ − (BY + Y ⊤B⊤) + I = 0.

Subsequently we name the linear operators (overloading notation with the sets of matrices in the general

multi-system LQR problem)

A(X) = AX +XA⊤, B(Y) = BY + Y ⊤B⊤,

and rewrite the Lyapunov equation as A(X) − B(Y) + I = 0. Then, under the assumption that A is

invertible, X becomes an affine function of Y :

X(Y) = A−1(B(Y)− I).

168

We now denote the set of stabilizing solutions by

SY = {Y ∈ Rm×n : X(Y) ≻ 0},

which is equivalent to the set of stabilizing controllers. We can then define

J(Y) =

J(X(Y), Y) : Y ∈ SY

∞ : otherwise .

Mohammadi et al. (2019) show that, over the a-sublevel set SY (a) = {Y : J(Y) ≤ a}, the cost J(Y) is

µ-strongly convex (see §2.4.2) with strong convexity constant

µ =
2λmin(R)λmin(Q)

a(1 + a2η)2
,

where

η =
∥B∥2

λmin(Q)λmin(I)
√
νλmin(R)

,

where

ν =
λ2min(I)

4

(
∥A∥2√
λmin(Q)

+
∥B∥2√
λmin(R)

)−2

.

Mohammadi et al. (2019) do not explicitly state the norm to which the strong convexity constant µ applies,

but they also give a Lipschitz smoothness constant with respect to the Frobenius norm ∥Y ∥F =
√
trY TY ,

so we we will assume that µ is also w.r.t. the Frobenius norm.

169

Note that the silly expression λmin(I) appears because Mohammadi et al. (2019) give the result for an

arbitrary initial state covariance, whereas we have already fixed it to I . Further applying our simplifying

assumptions Q = I and R = I , the latter becomes

ν =
1

4
(∥A∥2 + ∥B∥2)

−2 ,

so the former becomes

η =
∥B∥2√

1
4 (∥A∥2 + ∥B∥2)

−2
= 2∥B∥2(∥A∥2 + ∥B∥2),

and thus the strong convexity constant becomes

µ =
2

a
(
1 + 2a2∥B∥2(∥A∥2 + ∥B∥2)

)2 . (6.20)

We are interested in the growth of the cost as we move away from Y ⋆
B ≜ argmin Y ∈SY

J(Y). The smooth-

ness and convexity of the cost J imply that∇J(Y ⋆) = 0. Therefore, the linear term in the strong convexity

definition (2.4) becomes zero when centered on Y ⋆, leaving the lower bound

J(Y) ≥ J⋆B +
µ

2
∥Y − Y ⋆

B∥
2
F . (6.21)

Unfortunately this bound seems to be vacuous in numerical experiments. We instantiate it for a scalar

LQR problem with A = 1, B = 1 and plot a comparison between the actual LQR cost and the lower

bound implied by (6.20) and (6.21) in Figure 6.9. The sublevel set constant a is chosen as a = αJ⋆B for two

different values: α ∈ {1.001, 1.2}. Only those values of Y for which JB(Y X(Y)−1) ≤ a are shown, that

is, we restrict each plot to the domain SY (a) where the lower bound is valid.

170

0.84 0.86
Y

2.415

2.416

co
st

α = 1.001

0.8 1.0 1.2
Y

2.4

2.6

2.8

α = 1.2

variable
actual
lower_bound

Figure 6.9: Scalar LQR problem: Actual cost (solid) and lower bound (dashed) based on the strong con-
vexity constant derived by Mohammadi et al. (2019). The horizontal axis is the value Y in the convex
reparameterization Y = KX as described in §6.7.8.

The curvature of the lower bound is barely visible when plotted alongside the true cost. This is dis-

appointing. It seems unlikely that this would be useful for bounding covering numbers. Note that this

happens even for the small sublevel set induced by α = 1.001, where we can see in Figure 6.9 that the true

cost is close to a quadratic. Therefore, the lower bound appears loose relative to the second-order Taylor

expansion, not just when far from the minimum.

6.7.9 Suboptimal neighborhoods for variations in A

Since most of our theoretical efforts do not appear fruitful, we return to empirical work. One major area

of interest not explored in our original paper was variations in the A matrix instead of the B matrix. The

key question is: what kind of sets of A matrices should we consider? While the decomposed dynamics

form had an appealing interpretation in terms of actuator strength, applying the same construction to the

A matrix does not seem to be as interpretable.

Instead of proposing a particular structure for a set of A matrices, we can simply plot suboptimal

neighborhoods for well-known control systems without requiring that they all share some structure. We

show two-dimensional suboptimal neighborhoods plots analogous to Figure 6.5 for various systems. In all

systems, the dynamics are parameterized by two real values, represented by the horizontal and vertical

171

graph axes. We sample a 3 × 3 grid of parameter pairs, indicated by points on the plots, and synthesize

their LQR-optimal controllers. To visualize approximate suboptimal neighborhoods, we evaluate the sub-

optimality ratio of each controller on a finer grid of parameter pairs, indicated by the semi-transparent

regions. We repeat each experiment with three values of α.

6.7.9.1 Cart-pole system

mc

mp

ℓ θ

x u

g

Figure 6.10: Cart-pole system.

0.2 8
mass

1

3e+01

gr
av
ity

α = 1.01

0.2 8
mass

α = 1.05

0.2 8
mass

α = 1.2

Figure 6.11: α-suboptimal neighborhoods for cart-pole system. Each dot indicates an LQR-optimal con-
troller for a particular (mass, gravity) pair; the surrounding transparent region indicates its α-suboptimal
neighborhood. Axes are logarithmic. Colors have no meaning. Discussion in §6.7.9.1.

As our first example for variations inA, we consider the cart-pole system illustrated in Figure 6.10. The

cart rolls on a frictionless surface. A rigid massless rod is attached to a frictionless hinge joint on the cart.

At the other end of the rod is a point mass. The state space is the position of the cart x and the angle of the

rod θ, and their derivatives. The input u is a force upon the cart in the positive-x direction. The system

has four physical parameters: cart massmc, pole massmp, pole length ℓ, and gravitational constant g. All

172

are strictly positive. The cart-pole system has an unstable equilibrium at θ = 0 and a stable equilibrium

at θ = π. We consider stabilization at the θ = 0 (pole-up) position. Linearizing the nonlinear dynamics

(not shown) about the pole-up state yields the system matrices

A =

0 0 1 0

0 0 0 1

0
gmp

mc
0 0

0
g(mc +mp)

mcℓ
0 0

, B =

0

0

1

mc

1

mcℓ

.

We see that the parametersmc and ℓ influence bothA andB, but the parameters g andmp only influenceA.

If we fix mc = 1, ℓ = 1, then we are left with two parameters that affect only A. Although variations in

gravity are perhaps not of concern in most applications, we proceed with this experiment and show the

results in Figure 6.11.

The parameter mp (horizontal axis) varies from 1/4 to 8 and the parameter g (vertical axis) varies

from 1 to 32. We observe that the suboptimal neighborhoods are oblong and oriented diagonally to the

grid.

6.7.9.2 Two real eigenvalues

0.03 1
λ1

0.03

1

λ
2

α = 1.0001

0.03 1
λ1

α = 1.001

0.03 1
λ1

α = 1.01

Figure 6.12: α-suboptimal neighborhoods for system in controllable canonical form (CCF) with A hav-
ing two positive real eigenvalues. Each dot indicates an LQR-optimal controller for a particular pair of
eigenvalues; the surrounding transparent region indicates its α-suboptimal neighborhood. Axes are loga-
rithmic. Colors have no meaning. Discussion in §6.7.9.2.

173

Next we plot suboptimal neighborhoods for systems in controllable canonical form (defined in §2.9.3)

whenA has two real eigenvalues λ1, λ2. Because we are mainly interested in stabilizing unstable systems,

we select both eigenvalues to be positive: λ1, λ2 ∈ [0.03, 1]. Results are shown in Figure 6.12.

Recall from §2.9.3 that in controllable canonical form, theAmatrix is a permutation-invariant function

of the eigenvalues. This is apparent in the plot, where we see that all suboptimal neighborhoods aremirror-

symmetric across the λ1 = λ2 line. Therefore, we only show suboptimal neighborhoods for the optimal

controllers of systems with λ1 ≥ λ2. We observe that the suboptimal neighborhoods are elongated and

highly curved.

6.7.9.3 Pair of conjugate eigenvalues

0 1
real

0

1

im
ag

(p
os
iti
ve
)

α = 1.0001

0 1
real

α = 1.001

0 1
real

α = 1.01

Figure 6.13: α-suboptimal neighborhoods for system in controllable canonical form (CCF) with A having
two complex conjugate eigenvalues. Plot corresponds to upper right quadrant of complex plane. Each dot
indicates an LQR-optimal controller for the corresponding eigenvalue and its conjugate. The surrounding
transparent region indicates its α-suboptimal neighborhood. Axes are linear. Colors have no meaning.
Discussion in §6.7.9.3.

Next we plot suboptimal neighborhoods for systems in controllable canonical form whenA has a con-

jugate pair of complex eigenvalues λ, λ. In this case,A is parameterized by the two real valuesReλ, Imλ.

Again, because we are interested in stabilizing unstable systems, we select Reλ, Imλ ∈ (0, 1]. Results

are shown in Figure 6.13.

174

Here we observe that the suboptimal neighborhoods are more aligned with the grid, but they are much

narrower with respect to Reλ. In other words, the optimal controllers tend to be robust with respect to

the LQR cost against variations in Imλ, but not in Reλ.

6.7.9.4 Spring-mass-damper

1 kg

ks

kd

u

Figure 6.14: Spring-mass-damper system. There is no gravity.

Finally, we plot suboptimal neighborhoods for a spring-mass-damper system under external forces, as

illustrated in Figure 6.14. This is the canonical second-order linear ordinary differential equation given by

z̈ = −kz − dz + u,

where z is the displacement from the spring’s resting length, k is the spring constant, d is the damping

constant, and the mass is fixed at 1. Raised into first-order state-space form, the dynamics are

ẋ =

[
0 1

−k −d

]
︸ ︷︷ ︸

A

x+

[
0

1

]
︸︷︷︸
B

u,

where x =
[
z ż

]⊤
. We observe that A is already in controllable canonical form. Also, unlike our

other example systems, the unforced dynamics of this system are either passively stable (when d > 0) or

marginally stable (when d = 0).

Results are shown in Figure 6.15. Here the suboptimal neighborhoods are the closest to balls of all the

example systems. Further experiments are warranted to investigate potential links between stability of

175

0 1
spring constant

0

1

da
m
pi
ng

co
ns
ta
nt

α = 1.0001

0 1
spring constant

α = 1.001

0 1
spring constant

α = 1.005

Figure 6.15: α-suboptimal neighborhoods for spring-mass-damper system. Each dot indicates an LQR-
optimal controller for a particular (spring constant, damping constant) pair; the surrounding transparent
region indicates its α-suboptimal neighborhood. Axes are linear. Colors have no meaning. Discussion in
§6.7.9.4.

A and the behavior of suboptimal neighborhoods. It is also possible that systems with stable A could be

easier to work with analytically, but this requires more theoretical work. For example, we need to think

about the conditions under which a suboptimal controller could destabilize an inherently stable system.

6.7.9.5 Discussion

In summary, we visualized the suboptimal neighborhoods of LQR-optimal controllers for several families

of simple linear control systems for which the dynamics parameters Φ can be parameterized by R2
>0. We

saw that in general, the suboptimal neighborhoods are substantially nonconvex, not isotropic, and not

aligned with the grid of parameters.

If we were to use a grid-based constructive covering of the Φ parameterization space, then we would

need to find α-suboptimal policies for each grid cell. These experiments show that there exist systems

with the following property: if the policy π is α-suboptimal for a particular grid cell, then it is also α-

suboptimal for substantial area outside the cell. We illustrate this in Figure 6.16 for the cart-pole system.

Any axis-aligned box of systems for which the brown controller is α-suboptimal will be far smaller than

its true α-suboptimal neighborhood.

176

Figure 6.16: Example of a poor match between a grid partition of Φ and true suboptimal neighborhoods of
LQR-optimal controllers for Φ in the cart-pole system.

This example suggests that a grid-based covering would be an inefficient construction for the cart-pole

system. Still, it is possible that this inefficiency is not significant from an asymptotic perspective.

6.8 Conclusion and future work

In this chapter, we introduced andmotivated theα-suboptimal covering number to quantify infinite system

spaces for multi-system control problems. We defined a particular class of multi-system linear-quadratic

regulator problems amenable to analysis of the α-suboptimal covering number, and showed logarithmic

dependency on the problem “breadth” parameter θ in the scalar case. Towards analogous results for the

matrix case, we presented empirical studies intended to shed light on possible proof techniques. For the

upper bound, we considered a natural covering construction that would preserve logarithmic dependence

on θ but give exponential dependence on dimensionality. Experiments did not rule out its validity. For

the lower bound, we visualized suboptimal neighborhoods for two possible system classes and observed

interesting topological behavior for the minimal-coupling class. We also presented some intermediate

theoretical tools, reported on lines of inquiry that did not yield results, and visualized more suboptimal

neighborhoods for a generalization of our original setting.

177

After extending our current results to the matrix case, in future work the analysis can be applied to

other classes of multi-system LQR problems including variations in A,Q,R, discrete time, and stochastic

dynamics. It will be interesting to see if there are major differences between LQR variants. We also hope

that suboptimal covers and covering numbers will be a useful tool for analyzing how the size of the system

space affects the required expressiveness of function classes used in practice as multi-system policies, such

as neural networks.

178

Chapter 7

Conclusions

In this dissertation we presented four projects in the intersection of learning and control.

7.1 Summary of contributions

Our empirical work on deep reinforcement learning for domain adaptation shares an overall structure

with self-tuning regulators in classic adaptive control, but is generic enough to apply to any parameterized

family of MDPs. Introducing deep neural networks enables learning an embedding space representation

of the dynamics parameters that is both useful for adaptation and easier to identify from state-action

trajectories. By representing the full multi-system policy as a pre-trained neural network, we decouple

the adapting process from the control synthesis process, allowing us to use arbitrarily large amounts of

computation in the preparation stage. Although our experiments demonstrated the favorable properties

of the learned embedding and showed a modest improvement in an ablation study, they also provoked our

interest in more fundamental questions about algorithms and problem structure.

In our work on deformable manipulation, we demonstrated techniques to use a recurrent neural net-

work dynamics model for control in a partially observable system. We compensated for the inevitable

modeling error by using nonlinear state estimation to identify a value of the RNN internal state that is

179

consistent with past inputs and outputs. For control, we implemented nonlinear model-predictive con-

trol using gradient descent, allowing us to take advantage of the performance optimizations for RNNs in

deep learning libraries. Our technique is suitable for systems with complex dynamics but known reward

functions, exemplified by the task of tracking a trajectory with a point on a highly deformable object.

The challenges we faced in empirical reinforcement learning projects motivated interest in RL theory.

Our work on bounding the variance of the REINFORCE policy gradient estimator for LQR systems enabled

us to see how the variance is influenced by various problem parameters, including the dynamics stability,

reward function coefficients, environment stochasticity, and policy stochasticity. Our upper bound was

tight with respect to most parameters, and matched the behavior of the empirical variance qualitatively.

On the other hand, we also demonstrated with experiments that the lowest gradient variance does not

necessarily translate into the fastest convergence of REINFORCE.

Our work on suboptimal covering numbers attempted to answer a question raised by the first project:

How can we quantify “how much” a good adaptive policy must change its behavior with respect to the

problem parameters? We proposed the suboptimal covering number as a highly general, parameter-

independent way to do this. As an example, we showed matching logarithmic covering number bounds

for scalar and one-dimensional fully observable LQR problem families modeling adaptivity with respect to

variations in actuator strength. Our results showed a mild dependency, indicating that for these systems

we can handle a large range of actuator strengths, approaching uncontrollability, with only a few distinct

policies. We also conjectured an bound exponential in the dimension for multi-input problems, but have

not yet resolved it. Our intermediate mathematical results and intuition-building experiments suggest

that answering this question require nontrivial insight into the behavior of algebraic Riccati equations.

Our choice to focus on suboptimality ratio instead of cost difference was deliberate, but appears to create

extra challenges.

180

7.2 Future work

Our control framework for deformable manipulation involved standard choices for recurrent modeling,

estimation, and control. Formodeling, we are interested in replacing LSTMnetworkswithmore specialized

classes of learnable models, such as models that place expressive learnable components in a computational

graph alongside fixed or low-parameter nodes derived from physics principles (Heiden et al., 2021b). For

estimation and control, there are many other standardmethods. More broadly, we note that our framework

can be seen as the inner loop of a model-based RL algorithm. By closing the loop and updating the model

continuously, we can relax the assumption that our initial data gathering sufficiently covers the state

space. Our encouraging experimental results, along with the improved debugging and interpretability of

our framework relative to model-free RL, make us enthusiastic about further research into model-based

RL.

Our work on RL theory suggests two possible follow-ups. As we discussed in § 5.2, the RL theory

community has already made great strides on the LQR problem in the past few years. These results in-

clude sample complexity bounds that tie the problem parameters more directly to the RL algorithm per-

formance, instead of indirectly through the gradient variance. To our knowledge, the sample complexity

upper bound for REINFORCE in LQR problems remains open. Such a bound might help us gain insight

into the REINFORCE algorithm. However, due to the strict suboptimality of REINFORCE for cheap-control

LQR problems discussed by Tu and Recht (2019), it would not necessarily improve our understanding of

the LQR problem itself.

Beyond LQR, our experiments also suggest there is an interesting and complex relationship between

action-space noise, environmental noise, and algorithm performance in policy gradient methods. We find

our results somewhat surprising, because action-space noise is historically thought to be related to ex-

ploration, but exploration is not hard in linear dynamical systems. We are intrigued by the possibility of

181

designing an RL algorithm that controls action noise specifically for its effect on policy gradient optimiza-

tion. If sufficient state-space exploration is already guaranteed, can additional action noise still be helpful

for policy gradient methods?

We view our work on suboptimal coverings as the first step in a potentially large line of inquiry. There

is still much work to do on LQR problems. Beyond LQR, control theory offers many other classes of

“almost linear” systems, such as systems with delays, actuator limits, dead zones, sector-bounded (Lur’e)

nonlinearities, linear-in-features dynamics, and more. Bounding suboptimal covering numbers for these

system classes could also lead to insights. Looking further, we hope to find applications where suboptimal

covering numbers can be used to derive other useful properties about sets of dynamical systems. Connect-

ing back to our original motivation, we are especially interested in the possibility of converting covering

number bounds into insights about representing multi-system policies with neural networks. We also wish

to explore designing RL or adaptive control algorithms based on switching between policies in a known

suboptimal cover.

Outside these specific projects, we hope that our theoretical and empirical work can overlap more. In

the theoretical work in this dissertation, we have mainly used settings andmathematical tools from control

theory to analyze the behavior of existing algorithms and to derive general insights into problem structure.

However, the ultimate goal is to use insights and analysis to guide algorithm design. There is a large gap

between the empirical success of deep RL and the systems for which provably efficient RL algorithms

exist. We hope to contribute to bridging that gap, by building upon the current thorough understanding

of simple cases and gradually relaxing assumptions without losing all theoretical guarantees.

182

Bibliography

Abernethy, Jacob D. and Hazan, Elad (2016). Faster convex optimization: Simulated annealing with an
efficient universal barrier. In International Conference on Machine Learning (ICML), pages 2520–2528.

Agarwal, Alekh, Henaff, Mikael, Kakade, Sham, and Sun, Wen (2020). PC-PG: Policy cover directed
exploration for provable policy gradient learning. In Advances in Neural Information Processing
Systems (NeurIPS), pages 13399–13412.

Agarwal, Alekh, Jiang, Nan, Wen, Sham M. Kakade, and Sun (2022). Reinforcement learning: Theory and
algorithms. Working draft.

Agarwal, Alekh, Kakade, Sham M., Lee, Jason D., and Mahajan, Gaurav (2019). Optimality and
approximation with policy gradient methods in Markov decision processes. CoRR, abs/1908.00261.

Agarwal, Rishabh, Schwarzer, Max, Castro, Pablo Samuel, Courville, Aaron C, and Bellemare, Marc
(2021). Deep reinforcement learning at the edge of the statistical precipice. In Advances in Neural
Information Processing Systems (NeurIPS), pages 29304–29320.

Agazzi, Andrea and Lu, Jianfeng (2021). Global optimality of softmax policy gradient with single hidden
layer neural networks in the mean-field regime. In International Conference on Learning
Representations (ICLR).

Allgöwer, Frank and Zheng, Alex (2012). Nonlinear model predictive control, volume 26. Birkhäuser.

Amos, Brandon, Rodriguez, Ivan Dario Jimenez, Sacks, Jacob, Boots, Byron, and Kolter, J. Zico (2018).
Differentiable MPC for end-to-end planning and control. CoRR, abs/1810.13400.

Anderson, Brian D. O., Brinsmead, Thomas S., De Bruyne, Franky, Hespanha, Joao, Liberzon, Daniel, and
Morse, A. Stephen (2000). Multiple model adaptive control. Part 1: Finite controller coverings.
International Journal of Robust and Nonlinear Control, 10(11-12):909–929.

Andrychowicz, Marcin, Crow, Dwight, Ray, Alex, Schneider, Jonas, Fong, Rachel, Welinder, Peter,
McGrew, Bob, Tobin, Josh, Abbeel, Pieter, and Zaremba, Wojciech (2017). Hindsight experience replay.
In Advances in Neural Information Processing Systems (NIPS), pages 5048–5058.

Andrychowicz, Marcin, Raichuk, Anton, Stanczyk, Piotr, Orsini, Manu, Girgin, Sertan, Marinier, Raphaël,
Hussenot, Léonard, Geist, Matthieu, Pietquin, Olivier, Michalski, Marcin, Gelly, Sylvain, and Bachem,
Olivier (2020). What matters in on-policy reinforcement learning? A large-scale empirical study.
CoRR, abs/2006.05990.

Antonova, Rika, Cruciani, Silvia, Smith, Christian, and Kragic, Danica (2017). Reinforcement learning for
pivoting task. CoRR, abs/1703.00472.

183

Arriola-Rios, Veronica E., Guler, Puren, Ficuciello, Fanny, Kragic, Danica, Siciliano, Bruno, and Wyatt,
Jeremy L. (2020). Modeling of deformable objects for robotic manipulation: A tutorial and review.
Frontiers in Robotics and AI, 7:82.

Åström, Karl J and Wittenmark, Björn (2013). Adaptive Control. Courier Corporation.

Åström, Karl Johan and Murray, Richard M (2010). Feedback systems: An introduction for scientists and
engineers. Princeton University Press.

Barbič, Jernej and Popović, Jovan (2008). Real-time control of physically based simulations using gentle
forces. ACM Transactions on Graphics, 27(5):1–10.

Bern, James M, Banzet, Pol, Poranne, Roi, and Coros, Stelian (2019). Trajectory optimization for
cable-driven soft robot locomotion. In Robotics: Science and Systems (RSS).

Bern, James M., Schnider, Yannick, Banzet, Pol, Kumar, Nitish, and Coros, Stelian (2020). Soft robot
control with a learned differentiable model. In International Conference on Soft Robotics (RoboSoft),
pages 417–423.

Bertsekas, Dimitri P. and Shreve, Steven E. (1978). Stochastic Optimal Control: The Discrete Time Case.
Mathematics in Science and Engineering. Academic Press.

Bhandari, Jalaj and Russo, Daniel (2019). Global optimality guarantees for policy gradient methods.
CoRR, abs/1906.01786.

Bhojanapalli, Srinadh, Wilber, Kimberly, Veit, Andreas, Rawat, Ankit Singh, Kim, Seungyeon, Menon,
Aditya Krishna, and Kumar, Sanjiv (2021). On the reproducibility of neural network predictions. CoRR,
abs/2102.03349.

Boffi, Nicholas M., Tu, Stephen, and Slotine, Jean-Jacques E. (2021). Regret bounds for adaptive nonlinear
control. In Conference on Learning for Dynamics and Control (L4DC), pages 471–483.

Bousmalis, Konstantinos, Trigeorgis, George, Silberman, Nathan, Krishnan, Dilip, and Erhan, Dumitru
(2016). Domain separation networks. In Advances in Neural Information Processing Systems (NIPS),
pages 343–351.

Boyd, Stephen and Vandenberghe, Lieven (2004). Convex Optimization. Cambridge University Press.

Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schneider, Jonas, Schulman, John, Tang, Jie, and
Zaremba, Wojciech (2016). OpenAI Gym. CoRR, abs/1606.01540.

Bruder, Daniel, Gillespie, Brent, Remy, C. David, and Vasudevan, Ram (2019). Modeling and control of
soft robots using the Koopman operator and model predictive control. In Robotics: Science and Systems
(RSS).

Brunton, Steven L and Kutz, J Nathan (2019). Data-driven Science and Engineering: Machine Learning,
Dynamical Systems, and Control. Cambridge University Press.

Bu, Jingjing, Mesbahi, Afshin, Fazel, Maryam, and Mesbahi, Mehran (2019a). LQR through the lens of
first order methods: Discrete-time case. CoRR, abs/1907.08921.

Bu, Jingjing, Mesbahi, Afshin, and Mesbahi, Mehran (2019b). On topological and metrical properties of
stabilizing feedback gains: The MIMO case. CoRR, abs/1904.02737.

184

Bubeck, Sébastien (2015). Convex optimization: Algorithms and complexity. Foundations and Trends in
Machine Learning, 8(3-4):231–357.

Cai, Qi, Yang, Zhuoran, Lee, Jason D., and Wang, Zhaoran (2019). Neural temporal-difference learning
converges to global optima. In Advances in Neural Information Processing Systems (NeurIPS), pages
11312–11322.

Cassel, Asaf B and Koren, Tomer (2021). Online policy gradient for model free learning of linear quadratic
regulators with

√
T regret. In International Conference on Machine Learning (ICML), pages 1304–1313.

Chebotar, Yevgen, Hausman, Karol, Zhang, Marvin, Sukhatme, Gaurav, Schaal, Stefan, and Levine, Sergey
(2017). Combining model-based and model-free updates for trajectory-centric reinforcement learning.
In International Conference on Machine Learning (ICML), pages 703–711.

Chen, Tao, Murali, Adithyavairavan, and Gupta, Abhinav (2018). Hardware conditioned policies for
multi-robot transfer learning. In Advances in Neural Information Processing Systems (NeurIPS), pages
9355–9366.

Deisenroth, Marc Peter and Rasmussen, Carl Edward (2011). PILCO: A model-based and data-efficient
approach to policy search. In International Conference on Machine Learning (ICML), pages 465–472.

Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai, and Fei-Fei, Li (2009). ImageNet: A large-scale
hierarchical image database. In International Conference on Computer Vision and Pattern Recognition
(CVPR), pages 248–255.

Devin, Coline, Gupta, Abhishek, Darrell, Trevor, Abbeel, Pieter, and Levine, Sergey (2017). Learning
modular neural network policies for multi-task and multi-robot transfer. In International Conference on
Robotics and Automation (ICRA), pages 2169–2176.

Doyle, John C (1978). Guaranteed margins for LQG regulators. IEEE Transactions on Automatic Control,
23(4):756–757.

Du, Jingjing, Song, Chunyue, and Li, Ping (2012). Multimodel control of nonlinear systems: An
integrated design procedure based on gap metric and H∞ loop shaping. Industrial & Engineering
Chemistry Research, 51(9):3722–3731.

Du, Simon, Kakade, Sham, Lee, Jason, Lovett, Shachar, Mahajan, Gaurav, Sun, Wen, and Wang, Ruosong
(2021). Bilinear classes: A structural framework for provable generalization in RL. In International
Conference on Machine Learning (ICML), pages 2826–2836.

Duan, Yan, Chen, Xi, Houthooft, Rein, Schulman, John, and Abbeel, Pieter (2016a). Benchmarking deep
reinforcement learning for continuous control. CoRR, abs/1604.06778.

Duan, Yan, Schulman, John, Chen, Xi, Bartlett, Peter L., Sutskever, Ilya, and Abbeel, Pieter (2016b). RL2:
Fast reinforcement learning via slow reinforcement learning. CoRR, abs/1611.02779.

Duenser, Simon, Bern, James M, Poranne, Roi, and Coros, Stelian (2018). Interactive robotic manipulation
of elastic objects. In International Conference on Intelligent Robots and Systems (IROS), pages 3476–3481.

Dullerud, Geir E. and Paganini, Fernando (2000). A Course in Robust Control Theory: A Convex Approach.
Springer-Verlag New York.

185

Engstrom, Logan, Ilyas, Andrew, Santurkar, Shibani, Tsipras, Dimitris, Janoos, Firdaus, Rudolph, Larry,
and Madry, Aleksander (2020). Implementation matters in deep RL: A case study on PPO and TRPO. In
International Conference on Learning Representations (ICLR).

Eysenbach, Benjamin and Levine, Sergey (2021). Maximum entropy RL (provably) solves some robust RL
problems. CoRR, abs/2103.06257.

Fan, Jianqing, Wang, Zhaoran, Xie, Yuchen, and Yang, Zhuoran (2020). A theoretical analysis of deep
q-learning. In Conference on Learning for Dynamics and Control (L4DC), pages 486–489.

Fazel, Maryam, Ge, Rong, Kakade, Sham, and Mesbahi, Mehran (2018). Global convergence of policy
gradient methods for the linear quadratic regulator. In International Conference on Machine Learning
(ICML), pages 1467–1476.

Fekri, Sajjad, Athans, Michael, and Pascoal, Antonio (2006). Issues, progress and new results in robust
adaptive control. International Journal of Adaptive Control and Signal Processing, 20(10):519–579.

Feng, Fei, Yin, Wotao, Agarwal, Alekh, and Yang, Lin (2021). Provably correct optimization and
exploration with non-linear policies. In International Conference on Machine Learning (ICML), pages
3263–3273.

Finn, Chelsea, Abbeel, Pieter, and Levine, Sergey (2017). Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning (ICML), pages 1126–1135.

Fu, Minyue (1996). Minimum switching control for adaptive tracking. In Conference on Decision and
Control (CDC), pages 3749–3754.

Fu, Minyue and Barmish, B. Ross (1986). Adaptive stabilization of linear systems via switching control.
IEEE Transactions on Automatic Control, 31(12):1097–1103.

Gillespie, Morgan T., Best, Charles M., Townsend, Eric C., Wingate, David, and Killpack, Marc D. (2018).
Learning nonlinear dynamic models of soft robots for model predictive control with neural networks.
In International Conference on Soft Robotics (RoboSoft), pages 39–45.

Greensmith, Evan, Bartlett, Peter L, and Baxter, Jonathan (2004). Variance reduction techniques for
gradient estimates in reinforcement learning. Journal of Machine Learning Research, 5:1471–1530.

Ha, David and Schmidhuber, Jürgen (2018). Recurrent world models facilitate policy evolution. In
Advances in Neural Information Processing Systems (NeurIPS), pages 2455–2467.

Haarnoja, Tuomas, Zhou, Aurick, Abbeel, Pieter, and Levine, Sergey (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference on
Machine Learning (ICML), pages 1856–1865.

Hahn, David, Banzet, Pol, Bern, James M, and Coros, Stelian (2019). Real2sim: Visco-elastic parameter
estimation from dynamic motion. ACM Transactions on Graphics (TOG), 38(6):1–13.

He, Fengxiang and Tao, Dacheng (2020). Recent advances in deep learning theory. CoRR, abs/2012.10931.

Heiden, Eric, Macklin, Miles, Narang, Yashraj S., Fox, Dieter, Garg, Animesh, and Ramos, Fabio (2021a).
DiSECt: A differentiable simulation engine for autonomous robotic cutting. In Robotics: Science and
Systems (RSS).

186

Heiden, Eric, Millard, David, Coumans, Erwin, Sheng, Yizhou, and Sukhatme, Gaurav S. (2021b).
NeuralSim: Augmenting differentiable simulators with neural networks. In International Conference on
Robotics and Automation (ICRA), pages 9474–9481.

Henderson, Peter, Islam, Riashat, Bachman, Philip, Pineau, Joelle, Precup, Doina, and Meger, David
(2018). Deep reinforcement learning that matters. In AAAI Conference on Artificial Intelligence, pages
3207–3214.

Hespanha, João P, Liberzon, Daniel, and Morse, A Stephen (2000). Bounds on the number of switchings
with scale-independent hysteresis: Applications to supervisory control. In Conference on Decision and
Control (CDC), pages 3622–3627.

Higgins, Irina, Pal, Arka, Rusu, Andrei A., Matthey, Loïc, Burgess, Christopher, Pritzel, Alexander,
Botvinick, Matthew, Blundell, Charles, and Lerchner, Alexander (2017). DARLA: improving zero-shot
transfer in reinforcement learning. In International Conference on Machine Learning (ICML), pages
1480–1490.

Hinrichsen, Diederich and Pritchard, Anthony J. (2005). Mathematical Systems Theory I: Modelling, State
Space Analysis, Stability and Robustness. Texts in Applied Mathematics. Springer Berlin Heidelberg.

Hochreiter, Sepp and Schmidhuber, Jürgen (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Holzapfel, Gerhard A. (2002). Nonlinear solid mechanics: A continuum approach for engineering science.
Meccanica, 37(4):489–490.

Hu, Yuanming, Liu, Jiancheng, Spielberg, Andrew, Tenenbaum, Joshua B., Freeman, William T., Wu,
Jiajun, Rus, Daniela, and Matusik, Wojciech (2019). ChainQueen: A real-time differentiable physical
simulator for soft robotics. In International Conference on Robotics and Automation (ICRA), pages
6265–6271.

Huang, Sandy H., Papernot, Nicolas, Goodfellow, Ian J., Duan, Yan, and Abbeel, Pieter (2017). Adversarial
attacks on neural network policies. CoRR, abs/1702.02284.

Hwangbo, Jemin, Sa, Inkyu, Siegwart, Roland, and Hutter, Marco (2017). Control of a quadrotor with
reinforcement learning. IEEE Robotics and Automation Letters, 2(4):2096–2103.

Jalali, Ali Akbar and Golmohammad, Hassan (2012). An optimal multiple-model strategy to design a
controller for nonlinear processes: A boiler-turbine unit. Computers & Chemical Engineering, 46:48–58.

Jin, Chi, Allen-Zhu, Zeyuan, Bubeck, Sébastien, and Jordan, Michael I. (2018). Is Q-learning provably
efficient? In Advances in Neural Information Processing Systems (NeurIPS), pages 4868–4878.

Jin, Chi, Liu, Qinghua, and Miryoosefi, Sobhan (2021). Bellman eluder dimension: New rich classes of RL
problems, and sample-efficient algorithms. In Advances in Neural Information Processing Systems
(NeurIPS), pages 13406–13418.

Jin, Chi, Yang, Zhuoran, Wang, Zhaoran, and Jordan, Michael I (2020). Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory (COLT), pages
2137–2143.

Kakade, Sham M., Krishnamurthy, Akshay, Lowrey, Kendall, Ohnishi, Motoya, and Sun, Wen (2020).
Information theoretic regret bounds for online nonlinear control. CoRR, abs/2006.12466.

187

Kalashnikov, Dmitry, Irpan, Alex, Pastor, Peter, Ibarz, Julian, Herzog, Alexander, Jang, Eric, Quillen,
Deirdre, Holly, Ethan, Kalakrishnan, Mrinal, Vanhoucke, Vincent, and Levine, Sergey (2018). Scalable
deep reinforcement learning for vision-based robotic manipulation. In Conference on Robot Learning
(CoRL), pages 651–673.

Kalashnikov, Dmitry, Varley, Jake, Chebotar, Yevgen, Swanson, Benjamin, Jonschkowski, Rico, Finn,
Chelsea, Levine, Sergey, and Hausman, Karol (2021). Scaling up multi-task robotic reinforcement
learning. In Conference on Robot Learning (CoRL), pages 557–575.

Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82(1):35–45.

Konstantinov, Mihail, Gu, D Wei, Mehrmann, Volker, and Petkov, Petko (2003). Perturbation Theory for
Matrix Equations. Elsevier Science.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems, pages 1106–1114.

Kwon, Wook Hyun, Moon, Young Soo, and Ahn, Sang Chul (1996). Bounds in algebraic Riccati and
Lyapunov equations: A survey and some new results. International Journal of Control, 64(3):377–389.

Lancaster, Peter and Rodman, Leiba (1995). Algebraic Riccati Equations. Clarendon Press.

Lattimore, Tor and Szepesvári, Csaba (2020). Bandit Algorithms. Cambridge University Press.

L’ecuyer, Pierre (1990). A unified view of the IPA, SF, and LR gradient estimation techniques.
Management Science, 36(11):1364–1383.

Levine, Sergey (2018). Reinforcement learning and control as probabilistic inference: Tutorial and review.
CoRR, abs/1805.00909.

Levine, Sergey, Finn, Chelsea, Darrell, Trevor, and Abbeel, Pieter (2016). End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 17(1):1334–1373.

Li, Yifei, Du, Tao, Wu, Kui, Xu, Jie, and Matusik, Wojciech (2021). DiffCloth: Differentiable cloth
simulation with dry frictional contact. CoRR, abs/2106.05306.

Lipton, Zachary Chase (2015). A critical review of recurrent neural networks for sequence learning.
CoRR, abs/1506.00019.

Liu, Boyi, Cai, Qi, Yang, Zhuoran, and Wang, Zhaoran (2019). Neural trust region/proximal policy
optimization attains globally optimal policy. In Advances in Neural Information Processing Systems
(NeurIPS), pages 10564–10575.

Macklin, Miles, Müller, Matthias, and Chentanez, Nuttapong (2016). XPBD: Position-based simulation of
compliant constrained dynamics. In International Conference on Motion in Games, pages 49–54.

Malik, Dhruv, Pananjady, Ashwin, Bhatia, Kush, Khamaru, Koulik, Bartlett, Peter L., and Wainwright,
Martin J. (2018). Derivative-free methods for policy optimization: Guarantees for linear quadratic
systems. CoRR, abs/1812.08305.

Mania, Horia, Jordan, Michael I., and Recht, Benjamin (2022). Active learning for nonlinear system
identification with guarantees. Journal of Machine Learning Research, 23:32:1–32:30.

188

Mania, Horia, Tu, Stephen, and Recht, Benjamin (2019). Certainty equivalence is efficient for linear
quadratic control. In Advances in Neural Information Processing Systems (NeurIPS), pages 10154–10164.

Mcconachie, Dale and Berenson, Dmitry (2018). Estimating model utility for deformable object
manipulation using multiarmed bandit methods. IEEE Transactions on Automation Science and
Engineering, 15(3):967–979.

McConachie, Dale, Dobson, Andrew, Ruan, Mengyao, and Berenson, Dmitry (2020). Manipulating
deformable objects by interleaving prediction, planning, and control. The International Journal of
Robotics Research, 39(8):957–982.

McNichols, Kenneth H. and Fadali, M. Sami (2003). Selecting operating points for discrete-time gain
scheduling. Computers & Electrical Engineering, 29(2):289–301.

Mirza, Nada Masood (2020). Machine learning and soft robotics. In International Arab Conference on
Information Technology (ACIT), pages 1–5.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Graves, Alex, Antonoglou, Ioannis, Wierstra, Daan,
and Riedmiller, Martin (2013). Playing Atari with deep reinforcement learning. CoRR, abs/1312.5602.

Mohammadi, Hesameddin, Zare, Armin, Soltanolkotabi, Mahdi, and Jovanovic, Mihailo R. (2019). Global
exponential convergence of gradient methods over the nonconvex landscape of the linear quadratic
regulator. In Conference on Decision and Control (CDC), pages 7474–7479.

Molchanov, Artem, Chen, Tao, Hönig, Wolfgang, Preiss, James A, Ayanian, Nora, and Sukhatme,
Gaurav S (2019). Sim-to-(multi)-real: Transfer of low-level robust control policies to multiple
quadrotors. In International Conference on Intelligent Robots and Systems (IROS), pages 59–66.

Müller, Matthias, Heidelberger, Bruno, Teschner, Matthias, and Gross, Markus (2005). Meshless
deformations based on shape matching. ACM Transactions on Graphics (TOG), 24(3):471–478.

Murray-Smith, Roderick and Johansen, Tor Arne (1997). Multiple Model Approaches to Modelling and
Control. Taylor and Francis, London.

Nelles, Oliver (2001). Nonlinear System Identification. Springer, Berlin.

Nesterov, Yurii (1983). A method for unconstrained convex minimization problem with the rate of
convergence o(1/k2). In Proceedings of the USSR Academy of Sciences, pages 543–547.

Nesterov, Yurii (2003). Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media.

Nocedal, Jorge and Wright, Stephen J. (2006). Numerical Optimization. Springer, New York, NY, USA,
second edition.

OpenAI, Akkaya, Ilge, Andrychowicz, Marcin, Chociej, Maciek, Litwin, Mateusz, McGrew, Bob, Petron,
Arthur, Paino, Alex, Plappert, Matthias, Powell, Glenn, Ribas, Raphael, Schneider, Jonas, Tezak,
Nikolas, Tworek, Jerry, Welinder, Peter, Weng, Lilian, Yuan, Qiming, Zaremba, Wojciech, and Zhang,
Lei (2019). Solving Rubik’s cube with a robot hand. CoRR, abs/1910.07113.

Papadimitriou, Christos H and Tsitsiklis, John N (1987). The complexity of Markov decision processes.
Mathematics of operations research, 12(3):441–450.

189

Parisotto, Emilio, Ba, Lei Jimmy, and Salakhutdinov, Ruslan (2016). Actor-mimic: Deep multitask and
transfer reinforcement learning. In International Conference on Learning Representations (ICLR).

Paszke, Adam, Gross, Sam, Massa, Francisco, Lerer, Adam, Bradbury, James, Chanan, Gregory, Killeen,
Trevor, Lin, Zeming, Gimelshein, Natalia, Antiga, Luca, Desmaison, Alban, Köpf, Andreas, Yang,
Edward Z., DeVito, Zach, Raison, Martin, Tejani, Alykhan, Chilamkurthy, Sasank, Steiner, Benoit,
Fang, Lu, Bai, Junjie, and Chintala, Soumith (2019). PyTorch: An imperative style, high-performance
deep learning library. CoRR, abs/1912.01703.

Peng, Xue Bin, Andrychowicz, Marcin, Zaremba, Wojciech, and Abbeel, Pieter (2017). Sim-to-real
transfer of robotic control with dynamics randomization. CoRR, abs/1710.06537.

Peshkin, Leonid, Meuleau, Nicolas, and Kaelbling, Leslie Pack (1999). Learning policies with external
memory. In International Conference on Machine Learning (ICML), pages 307–314.

Petersen, Ian R. and McFarlane, Duncan C. (1994). Optimal guaranteed cost control and filtering for
uncertain linear systems. IEEE Transactions on Automatic Control, 39(9):1971–1977.

Pinto, Lerrel, Davidson, James, Sukthankar, Rahul, and Gupta, Abhinav (2017). Robust adversarial
reinforcement learning. CoRR, abs/1703.02702.

Preiss, James A., Arnold, Sébastien M. R., Wei, Chen-Yu, and Kloft, Marius (2019). Analyzing the variance
of policy gradient estimators for the linear-quadratic regulator. In NeurIPS Workshop on Optimization
Foundations for Reinforcement Learning.

Preiss, James A., Hausman, Karol, and Sukhatme, Gaurav S. (2018). Learning a system-ID embedding
space for domain specialization with deep reinforcement learning. In NeurIPS Workshop on
Reinforcement Learning under Partial Observability.

Preiss, James A., Millard, David, Yao, Tao, and Sukhatme, Gaurav S. (2022). Tracking fast trajectories with
a deformable object using a learned model. In International Conference on Robotics and Automation
(ICRA).

Preiss, James A. and Sukhatme, Gaurav S. (2021). Suboptimal coverings for continuous spaces of control
tasks. In Conference on Learning for Dynamics and Control (L4DC), pages 547–558.

Qiao, Yi-Ling, Liang, Junbang, Koltun, Vladlen, and Lin, Ming C. (2020). Scalable differentiable physics
for learning and control. In International Conference on Machine Learning (ICML), pages 7847–7856.

Raffin, Antonin, Hill, Ashley, Gleave, Adam, Kanervisto, Anssi, Ernestus, Maximilian, and Dormann,
Noah (2021). Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8.

Rosenblatt, Frank (1958). The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386.

Rusu, Andrei A., Vecerík, Matej, Rothörl, Thomas, Heess, Nicolas, Pascanu, Razvan, and Hadsell, Raia
(2017). Sim-to-real robot learning from pixels with progressive nets. In Conference on Robot Learning
(CoRL), pages 262–270.

Sabelhaus, Andrew P. and Majidi, Carmel (2021). Gaussian process dynamics models for soft robots with
shape memory actuators. In 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), pages
191–198.

190

Sadeghi, Fereshteh and Levine, Sergey (2017). CAD2RL: real single-image flight without a single real
image. In Robotics: Science and Systems (RSS).

Safonov, Michael and Athans, Michael (1977). Gain and phase margin for multiloop LQG regulators. IEEE
Transactions on Automatic Control, 22(2):173–179.

Schaul, Tom, Horgan, Daniel, Gregor, Karol, and Silver, David (2015). Universal value function
approximators. In International Conference on Machine Learning (ICML), pages 1312–1320.

Schrittwieser, Julian, Antonoglou, Ioannis, Hubert, Thomas, Simonyan, Karen, Sifre, Laurent, Schmitt,
Simon, Guez, Arthur, Lockhart, Edward, Hassabis, Demis, Graepel, Thore, et al. (2020). Mastering
Atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609.

Schulman, John, Levine, Sergey, Abbeel, Pieter, Jordan, Michael I., and Moritz, Philipp (2015). Trust
region policy optimization. In International Conference on Machine Learning (ICML), pages 1889–1897.

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec, and Klimov, Oleg (2017). Proximal
policy optimization algorithms. CoRR, abs/1707.06347.

Shalev-Shwartz, Shai, Shamir, Ohad, Srebro, Nathan, and Sridharan, Karthik (2010). Learnability, stability
and uniform convergence. Journal of Machine Learning Research, 11:2635–2670.

Shi, Guanya, Hönig, Wolfgang, Shi, Xichen, Yue, Yisong, and Chung, Soon-Jo (2021). Neural-Swarm2:
Planning and control of heterogeneous multirotor swarms using learned interactions. IEEE
Transactions on Robotics, pages 1–17.

Shi, Guanya, Shi, Xichen, O’Connell, Michael, Yu, Rose, Azizzadenesheli, Kamyar, Anandkumar,
Animashree, Yue, Yisong, and Chung, Soon-Jo (2019). Neural lander: Stable drone landing control
using learned dynamics. In International Conference on Robotics and Automation (ICRA), pages
9784–9790.

Siciliano, Bruno, Sciavicco, Lorenzo, Villani, Luigi, and Oriolo, Giuseppe (2009). Robotics: Modelling,
Planning and Control. Advanced Textbooks in Control and Signal Processing. Springer-Verlag, London.

Silver, David, Hubert, Thomas, Schrittwieser, Julian, Antonoglou, Ioannis, Lai, Matthew, Guez, Arthur,
Lanctot, Marc, Sifre, Laurent, Kumaran, Dharshan, Graepel, Thore, et al. (2018). A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144.

Simchowitz, Max and Foster, Dylan (2020). Naive exploration is optimal for online LQR. In International
Conference on Machine Learning (ICML), pages 8937–8948.

Singh, Sumeet, Richards, Spencer M, Sindhwani, Vikas, Slotine, Jean-Jacques E, and Pavone, Marco
(2021). Learning stabilizable nonlinear dynamics with contraction-based regularization. The
International Journal of Robotics Research, 40(10-11):1123–1150.

Song, Yuda and Sun, Wen (2021). PC-MLP: Model-based reinforcement learning with policy cover guided
exploration. In International Conference on Machine Learning (ICML), pages 9801–9811.

Sontag, Eduardo D. (2013). Mathematical Control Theory: Deterministic Finite Dimensional Systems.
Springer Science & Business Media.

Sperry, Elmer A (1921). Aeroplane stabilizer. US Patent US1368226A.

191

Stilwell, Daniel J. and Rugh, Wilson J. (1999). Interpolation of observer state feedback controllers for gain
scheduling. IEEE Transactions on Automatic Control, 44(6):1225–1229.

Sulsky, D., Chen, Z., and Schreyer, H. L. (1994). A particle method for history-dependent materials.
Computer Methods in Applied Mechanics and Engineering, 118(1):179–196.

Sun, Ji-Guang (1998). Perturbation theory for algebraic Riccati equations. SIAM Journal on Matrix
Analysis and Applications, 19(1):39–65.

Sun, Yue and Fazel, Maryam (2021). Learning optimal controllers by policy gradient: Global optimality
via convex parameterization. In Conference on Decision and Control (CDC), pages 4576–4581.

Sutton, Richard S. and Barto, Andrew G. (2018). Reinforcement learning: An introduction. Adaptive
computation and machine learning. MIT Press, second edition.

Tan, Wen, Marquez, Horacio J., and Chen, Tongwen (2004). Operating point selection in multimodel
controller design. In American Control Conference, pages 3652–3657.

Tao, Terence (2012). Topics in random matrix theory. Graduate studies in mathematics. American
Mathematical Society, Providence, RI.

Teh, Yee Whye, Bapst, Victor, Czarnecki, Wojciech M., Quan, John, Kirkpatrick, James, Hadsell, Raia,
Heess, Nicolas, and Pascanu, Razvan (2017). Distral: Robust multitask reinforcement learning. In
Advances in Neural Information Processing Systems (NIPS), pages 4499–4509.

Terzi, Enrico, Bonassi, Fabio, Farina, Marcello, and Scattolini, Riccardo (2021). Learning model predictive
control with long short-term memory networks. International Journal of Robust and Nonlinear Control.

Thieffry, Maxime, Kruszewski, Alexandre, Duriez, Christian, and Guerra, Thierry-Marie (2018). Control
design for soft robots based on reduced-order model. IEEE Robotics and Automation Letters, 4(1):25–32.

Thuruthel, Thomas George, Falotico, Egidio, Renda, Federico, and Laschi, Cecilia (2019). Model-based
reinforcement learning for closed-loop dynamic control of soft robotic manipulators. IEEE Transactions
on Robotics, 35(1):124–134.

Tits, André L and Yang, Yaguang (1996). Globally convergent algorithms for robust pole assignment by
state feedback. IEEE Transactions on Automatic Control, 41(10):1432–1452.

Tobin, Josh, Fong, Rachel, Ray, Alex, Schneider, Jonas, Zaremba, Wojciech, and Abbeel, Pieter (2017).
Domain randomization for transferring deep neural networks from simulation to the real world. In
International Conference on Intelligent Robots and Systems (IROS), pages 23–30.

Todorov, Emanuel, Erez, Tom, and Tassa, Yuval (2012). MuJoCo: A physics engine for model-based
control. In International Conference on Intelligent Robots and Systems (IROS), pages 5026–5033.

Tonkens, Sander, Lorenzetti, Joseph, and Pavone, Marco (2021). Soft robot optimal control via reduced
order finite element models. In International Conference on Robotics and Automation (ICRA), pages
12010–12016.

Trefethen, Lloyd N and Embree, Mark (2005). Spectra and pseudospectra: The Behavior of Nonnormal
Matrices and Operators. Princeton University Press.

Tropp, Joel A. (2015). An introduction to matrix concentration inequalities. Foundations and Trends in
Machine Learning, 8(1-2):1–230.

192

Tu, Stephen and Recht, Benjamin (2019). The gap between model-based and model-free methods on the
linear quadratic regulator: An asymptotic viewpoint. In Conference on Learning Theory (COLT), pages
3036–3083.

van Baar, Jeroen, Sullivan, Alan, Cordorel, Radu, Jha, Devesh K., Romeres, Diego, and Nikovski, Daniel
(2019). Sim-to-real transfer learning using robustified controllers in robotic tasks involving complex
dynamics. In International Conference on Robotics and Automation (ICRA), pages 6001–6007.

van Hasselt, Hado P, Guez, Arthur, Hessel, Matteo, Mnih, Volodymyr, and Silver, David (2016). Learning
values across many orders of magnitude. In Advances in Neural Information Processing Systems, pages
4287–4295.

Wang, Lingxiao, Cai, Qi, Yang, Zhuoran, and Wang, Zhaoran (2020). Neural policy gradient methods:
Global optimality and rates of convergence. In International Conference on Learning Representations
(ICLR).

Wang, Sheng-De, Kuo, Te-Son, and Hsu, Chen-Fa (1986). Trace bounds on the solution of the algebraic
matrix Riccati and Lyapunov equation. IEEE Transactions on Automatic Control, 31(7):654–656.

Wei, Chen-Yu, Jahromi, Mehdi Jafarnia, Luo, Haipeng, Sharma, Hiteshi, and Jain, Rahul (2020).
Model-free reinforcement learning in infinite-horizon average-reward Markov decision processes. In
International Conference on Machine Learning (ICML), pages 10170–10180.

Wierstra, Daan, Foerster, Alexander, Peters, Jan, and Schmidhuber, Juergen (2007). Solving deep memory
POMDPs with recurrent policy gradients. In International Conference on Artificial Neural Networks,
pages 697–706.

Williams, Ronald J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256.

Wriggers, Peter (2008). Nonlinear Finite Element Methods. Springer-Verlag, Berlin Heidelberg.

Xu, Pan and Gu, Quanquan (2020). A finite-time analysis of Q-learning with neural network function
approximation. In International Conference on Machine Learning (ICML), pages 10555–10565.

Yang, Zhaoyang, Merrick, Kathryn E, Abbass, Hussein A, and Jin, Lianwen (2017). Multi-task deep
reinforcement learning for continuous action control. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 3301–3307.

Yang, Zhuoran, Jin, Chi, Wang, Zhaoran, Wang, Mengdi, and Jordan, Michael I. (2020). Provably efficient
reinforcement learning with kernel and neural function approximations. In Advances in Neural
Information Processing Systems (NeurIPS).

Yoon, Myung-Gon, Ugrinovskii, Valery A., and Pszczel, Marek (2007). Gain-scheduling of minimax
optimal state-feedback controllers for uncertain LPV systems. IEEE Transactions on Automatic Control,
52(2):311–317.

Yu, Tianhe, Kumar, Saurabh, Gupta, Abhishek, Levine, Sergey, Hausman, Karol, and Finn, Chelsea (2020).
Gradient surgery for multi-task learning. CoRR, abs/2001.06782.

Yu, Tianhe, Quillen, Deirdre, He, Zhanpeng, Julian, Ryan, Hausman, Karol, Finn, Chelsea, and Levine,
Sergey (2019). Meta-World: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on Robot Learning (CoRL), pages 1094–1100.

193

Yu, Wenhao, Tan, Jie, Liu, C. Karen, and Turk, Greg (2017). Preparing for the unknown: Learning a
universal policy with online system identification. In Robotics: Science and Systems (RSS).

Zhang, Chiyuan, Vinyals, Oriol, Munos, Rémi, and Bengio, Samy (2018). A study on overfitting in deep
reinforcement learning. CoRR, abs/1804.06893.

Zhu, Jihong, Cherubini, Andrea, Dune, Claire, Navarro-Alarcon, David, Alambeigi, Farshid, Berenson,
Dmitry, Ficuciello, Fanny, Harada, Kensuke, Li, Xiang, Pan, Jia, and Yuan, Wenzhen (2021). Challenges
and outlook in robotic manipulation of deformable objects. CoRR, abs/2105.01767.

Zhu, Yuke, Wang, Ziyu, Merel, Josh, Rusu, Andrei A., Erez, Tom, Cabi, Serkan, Tunyasuvunakool, Saran,
Kramár, János, Hadsell, Raia, de Freitas, Nando, and Heess, Nicolas (2018). Reinforcement and
imitation learning for diverse visuomotor skills. In Robotics: Science and Systems (RSS).

Zimmermann, Simon, Poranne, Roi, and Coros, Stelian (2021). Dynamic manipulation of deformable
objects with implicit integration. IEEE Robotics and Automation Letters, 6(2):4209–4216.

194

	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Structure of dissertation

	Foundation: Mathematics and Themes
	Notation
	Fundamentals
	Metrics
	Lipschitz and smooth functions
	Orthogonal and Euclidean groups

	Optimization
	Convexity
	Convex functions
	Subdifferentials
	Convex optimization problems

	Strong convexity
	Quasiconvex functions
	Convex optimization algorithms

	Markov decision processes
	Partially observable Markov decision processes
	Trajectories
	Infinite-horizon MDPs
	Bellman equations and operators

	Finite-horizon objective

	Families of MDPs
	Dynamics variations
	Reward variations

	Reinforcement learning
	On and off-policy algorithms
	Policy gradient methods
	Log-derivative trick
	Policy gradient algorithm

	Control theory paradigms
	System identification
	Persistence of excitation

	Control with known model
	Robust control
	Gain scheduling
	Adaptive control
	Model-predictive control
	Receding horizon
	Linear MPC

	Linear dynamical systems and control
	Discrete time
	Autonomous system
	Stability
	Linear control systems
	Controllability
	Stabilizing controllers
	Linear quadratic regulator (LQR)
	Outputs and State Estimation
	Observability
	Luenberger observer
	Kalman filter

	Continuous time
	Autonomous system
	Stability
	Linear control systems
	Controllability
	Linear-quadratic regulator

	Canonical forms
	Pole placement

	Statistical learning
	General statistical learning problem
	Supervised learning
	Gradient-based optimization

	Neural networks
	Neural network architectures
	Nonlinearities

	Fully connected neural network
	1D convolutional neural network
	Recurrent neural network
	Long short-term memory

	Reinforcement Learning for Universal Policies
	Related work
	Problem statement
	Method
	Learning algorithms
	Implementation details

	Experiments
	Point-Mass Environment
	Half-Cheetah environment

	Discussion
	Simplified experiment: Universal policy versus experts

	Deformable Manipulation using Learned Models
	Introduction and Related Work
	Problem Setting and Preliminaries
	Methods
	Data collection
	RNN dynamics model
	Model-predictive control with reduced-order model
	Estimating the RNN state
	Implementation

	Experiments
	Model frequency response
	MPC tracking

	Conclusion

	Variance of Policy Gradient for LQR problems
	Introduction
	Related work
	Problem setting
	Main result: Variance bounds on the REINFORCE estimator
	Experiments
	RL policy optimality for varying Σ u

	Proof of Theorem 5.4.1
	Bounding |x t|
	Bounding Term 1
	Bounding Term 2
	Combining bounds

	Proof of Theorem 5.4.2
	Lower bounding expected squared sum of noise-state products
	Lower bounding expected squared sum of rewards
	
	Combining

	Discussion

	Suboptimal Coverings
	Introduction
	Problem setting
	Related work
	Theoretical results
	Scalar upper bound
	Scalar lower bound

	Empirical results
	Geometric grid construction for upper bounds
	Empirical upper bound on covering number.
	Efficiency of geometric grid partition.
	Efficiency of GCC synthesis.

	Suboptimal neighborhood visualizations

	Proof of Lemma 6.4.8
	Efforts towards matrix case
	Easy case: Scalar multiples of B
	Role of α's lower bound
	Form of Riccati perturbation for geometric grid recursion
	Multiplicative change in P
	Additive change in P

	How we would use bounds on cost change due to B perturbations
	Existing Riccati solution and perturbation bounds
	Lower bound candidates
	Lower bound for A = I
	Lower bound for A = ones / n

	Packing-based strategies for lower bounds
	Reparameterization
	Suboptimal neighborhoods for variations in A
	Cart-pole system
	Two real eigenvalues
	Pair of conjugate eigenvalues
	Spring-mass-damper
	Discussion

	Conclusion and future work

	Conclusions
	Summary of contributions
	Future work

	Bibliography

