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Abstract
We describe a trajectory optimization framework that maximizes observability of
one or more user-chosen states in a nonlinear system. Our framework is based on
a novel metric for quality of observability that is state-estimator agnostic and offers
improved numerical stability over prior methods in some cases where the states of
interest do not appear directly in the observation. We apply this metric to trajectory
optimization problems for closed-loop self-calibration, maintaining observability
while navigating through an environment, and rapidly modifying an already-planned
trajectory for online recalibration. We include a statistical procedure to balance
observability of several states with heterogeneous units and magnitudes. As an
example, we apply our framework to online calibration of GPS-IMU and visual-
inertial navigation systems on a quadrotor helicopter. Extensive simulations and
a real-robot experiment demonstrate the effectiveness of our framework, showing
better convergence of the states and the resulting higher precision in navigation.
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1 Introduction
Robotic state estimation and control often require knowledge of the robot’s calibration
parameters. The set of calibration parameters for a complex robot may be large and
diverse, including geometric properties such as sensor poses and link kinematics,
optical camera intrinsics, electromechanical relationships in sensors and actuators, or
dynamics properties such as moments of inertia and friction coefficients. Incorrect
estimates of calibration parameter values can degrade state estimation accuracy or
introduce a discrepancy between expected and actual results of control inputs. The
stability guarantee of a feedback controller may even become invalid if a calibration
parameter is estimated incorrectly.

Many robotic applications require the robot to operate in harsh environments
or for a long periods of time. Under such conditions, it may be impractical or
impossible to interrupt the robot’s operation and perform an offline calibration
routine. Still, calibration parameters usually change over time due to component wear,
environmental conditions, or transient changes, e.g. after a collision. Online self-
calibration addresses this issue by calibrating the relevant system states continuously
during nominal operation, often within the same computational framework used to
estimate configuration states such as position and orientation.

Including self-calibration states in the estimator comes at an important cost: the
dimensionality of the state vector increases while the dimensionality of measurements
remains unchanged. This cost may lead to the requirement of a nonzero, “exciting”
system input to render all states observable (Kelly and Sukhatme 2011). As a
result, motion planning and self-calibration are coupled: a pathological motion
can make self-calibration impossible, but a motion optimized for observability can
make self-calibration easier. Awareness of observability can be incorporated into a
robot’s planning and control framework to improve state estimation quality while
simultaneously completing the robot’s primary task. Note that motion planning based
on state observability is fundamentally different from planning in the active perception
context. Whereas the latter focuses on planning to obtain optimal measurements (i.e.
system outputs), observability-aware planning focuses on generating optimal system
excitations (i.e. system inputs).

In this paper, we describe such a framework for observability-aware motion
generation. Our work is built upon the theory of nonlinear observability, as developed
in the controls community. In particular, we optimize for a cost function closely
related to the Local Observability Gramian, which measures the quality of observability
for a nonlinear system following a particular trajectory. This theory applies to any
nonlinear system that has smooth dynamics, a differentiable sensor model, and is
observable in the user-chosen states∗. Moreover, our method is not specific to a
particular state estimation method, as it acts directly on the nonlinear time-continuous
system definition. By choosing appropriate polynomial bases to represent trajectories,
we implement our method for both closed-loop self-calibration trajectories and for

∗Note that any partially observable system can be transformed into a fully observable system (given specific
inputs) with a state vector dimension of the rank of the partially observable original system following
Martinelli (2011)
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Figure 1. Root Mean Squared Error (RMSE) convergence of EKF self-calibration states for
a quadrotor with GPS-IMU sensor suite: accelerometer bias ba, gyroscope bias bω , and
GPS-IMU offset pp

i . From top to bottom: figure-eight heuristic trajectory, star heuristic
trajectory, optimal trajectory from our method. Figure-eight and star trajectories include
added yaw movement for improved observability.

collision-free trajectories through an environment with obstacles. We address the online
replanning scenario with a fast sampling-based approach that improves observability
over a short time horizon while maintaining continuity with an existing plan. We also
describe a statistical scaling procedure that accounts for the varying units, parameter
value distributions, dynamics, and measurement model in a system with multiple self-
calibration states. This procedure allows us to generate trajectories that balance the
goals of converging multiple self-calibration states.

We evaluate our methods with a series of experiments on a real and a simulated
quadrotor using both GPS-IMU and visual-inertial sensor suites. The experiments
show that our method compares favorably against manually designed heuristics and
an EKF-specific covariance approach in the self-calibration task. We show that our
observability-aware environment navigation trajectory leads to more accurate state
estimation than a common energy-minimizing trajectory in both the full trajectory
planning and online replanning scenarios. Some of the real robot experiments are
shown in the video: https://youtu.be/v8UkOtRJEsw.

Prepared using sagej.cls

https://youtu.be/v8UkOtRJEsw


4 International Journal of Robotics Research Preprint(X)

2 Related Work

Past work on planning for state estimation can roughly be divided into two
groups: exteroceptive, or environment-based, and proprioceptive, or movement-based.
Exteroceptive methods focus on analyzing the environment around a robot and biasing
the motion planning towards the most informative areas, generally by maximizing an
information theoretic metric (Bry and Roy 2011; Julian et al. 2012; Indelman et al.
2015). More recent work considered dense photometric image information by seeking
highly textured surfaces (Costante et al. 2016).

Proprioceptive methods, which include the method shown in this paper, focus on
how the robot should move to obtain the most accurate state estimates regardless of the
environment. Much work in this area selects a specific realization of a state estimator
and minimizes the final state uncertainty. With simple systems it may be possible to
obtain an analytic solution (Martinelli and Siegwart 2006), but more commonly on
complex systems a sampling-based approach with simulation is used (Achtelik et al.
2013; Bähnemann et al. 2017). However, simulating the state estimator exposes the
trajectory optimization method to any shortcomings of the state estimator, particularly
with regard to linearization inconsistency as demonstrated by Hesch et al. (2014).
These methods also inherit the potentially large computational cost of the state
estimator.

Several works have proposed methods to select highly informative subsequences
from a long trajectory. This step is necessary to make large-scale bundle adjustment
calibration computationally feasible on a small mobile platform. In Maye et al. (2016),
the authors evaluate the mutual information between the current parameter estimate
and an incoming batch of data, taking advantage of intermediate results from the
Gauss-Newton optimization used to estimate the parameters. The method is applied
to a 2D SLAM problem with landmarks. A similar approach was applied in the
visual-inertial odometry setting in Schneider et al. (2017) using an approximated,
more computationally efficient information metric. Other works focus on detecting
changes in the self-calibration parameters and directly modeling the parameter drift
in the estimation stage, such as Nobre et al. (2017). Khosoussi et al. (2016) identified
a connection between the SLAM pose graph structure and state estimate uncertainty,
and derived methods to prune the pose graph to a desired sparseness nearly optimally.
In contrast, our framework focuses on generating informative segments rather than
evaluating the information content of given segments.

Krener and Ide (2009) propose a continuous measure of observability building
upon the non-linear observability analysis suggested by Hermann and Krener (1977).
This method analyzes the system dynamics and sensor model directly and is not
specific to any particular state estimator. For states directly appearing in the sensor
model, Hinson and Morgansen (2013) made use of this measure of observability to
generate observability-aware trajectories. For states that do not appear in the sensor
model, these methods require numerical integration of the system dynamics, which
potentially introduces numerical stability issues. Our prior work (Hausman et al. 2017)
addressed this issue by optimizing a slightly different, but closely related measure
of observability. However, that method only optimizes trajectories for estimation of
a single self-calibration state at a time, and does not handle environmental obstacles. In
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our follow-up work (Preiss et al. 2017), we remove those two limitations by introducing
a multi-state scaling technique and a trajectory representation based on Bézier curves
that allows optimization with guaranteed obstacle avoidance. In this paper, we extend
these methods to the online replanning scenario, where a robot modifies an existing
trajectory plan on the fly in reaction to drift or sudden changes in self-calibration
parameter values. Our replanning approach is similar in spirit to the planning under
uncertainty method of Sun et al. (2015), but we sample directly in the spline basis,
whereas they select the best plan from the outputs of a set of randomized motion
planners.

We also present new analysis of the mathematical structure of our optimization
objective that illuminates the difficulties of applying dynamic programming or
RRT-based methods to planning for self-calibration. The belief-space RRT variant
introduced by Bry and Roy (2011) for planning under uncertainty contains some
techniques that could be applied to observability, but direct application of their method
would require treating observability as a constraint rather than the main objective. We
additionally show that a straightforward graph discretization of the problem is NP-
complete, suggesting a fundamental hardness gap between observability and typical
trajectory optimization objectives. Besides these extensions, this paper unifies our prior
work into a comprehensive, self-contained article with extended derivations, improved
notation, and additional details.

Other work in observability-aware motion planning has optimized similar measures
of observability, but the problem of optimizing for states that do not appear in the
measurement function is either avoided or resolved only for specific systems by manual
analysis. Hinson et al. (2013) analyzed simple systems where the (generally intractable)
state transition matrix is available, allowing direct derivation of the optimal control
inputs. Bryson and Sukkarieh (2008) expressed 3D inertial SLAM in an error-state
form, which allowed exact computation of the system’s unobservable modes and
subsequent manual design of a set of maneuvers to improve observability. Tribou et al.
(2015) identified unobservable modes of a multi-camera SLAM system in the unknown
dynamics setting, where the task is reduced to analysis of the rank of the measurement
Jacobian. Travers and Choset (2015) derived closed-form measures of observability for
the specific system of series-elastic actuated manipulator and applied the measure in
an online control setting. Hernandez et al. (2015) presented an alternative approach to
observability analysis based on the volume of the set of indistinguishable trajectories
for a given input sequence. Unlike most techniques in the literature, their approach can
account for unknown noise inputs in the system.

These works all address similar problems to ours, but they require in-depth manual
derivations for each system analyzed. In contrast, our method provides a “recipe” that
produces an observability-aware trajectory optimization method given the user-chosen
states of interest, system dynamics, and measurement equations. Our method is based
on numerical optimization and can be applied to a new system by a non-expert.
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3 Preliminaries
We consider a nonlinear dynamical system of the following form:

ẋ = f(x,u, δ), z = h(x, ε), (1)

where x is the state, u are the control inputs, z are the outputs (sensor readings), and δ, ε
are noise values caused by modeling errors, imperfect sensors, and imperfect actuators.
In this work, we use the term self-calibration states to describe those states whose
dynamics are constant in expectation and independent of the control inputs and other
state variables. We denote the self-calibration states as xsc. Some examples of self-
calibration states are given in the introduction of this paper.

3.1 Nonlinear Observability Analysis
The observability of a system is defined as the possibility to compute the initial
system state given a sequence of inputs u(t) and measurements z(t). A system is
globally observable if there exist no two points x0(0), x1(0) in the state space with the
same input-output u(t)-z(t) maps for any control inputs. A system is weakly locally
observable at the state x0(0) if there is no point x1(0) with the same input-output map
in a neighborhood of x0(0) for a specific control input (Krener and Ide 2009).

Observability of linear as well as nonlinear systems can be determined by performing
a rank test where the system is observable if the rank of the observability matrix
(defined shortly) is equal to the number of states. In the case of a nonlinear system,
the nonlinear observability matrix is constructed using the Lie derivatives of the sensor
model h(x). Lie derivatives are defined recursively with a zero-noise assumption. The
0-th Lie derivative is the sensor model itself, i.e.:

Lh0 = h(x), (2)

the next Lie derivative is constructed as:

Lhi+1 =
∂

∂t
Lhi =

∂Lhi
∂x

∂x

∂t
=
∂Lhi
∂x

f(x,u). (3)

One can observe that Lie derivatives with respect to the sensor model are equivalent to
the respective time derivatives of the sensory output z:

ż =
∂

∂t
z(t) =

∂

∂t
h(x(t)) =

∂h

∂x

∂x

∂t
=
∂h

∂x
f(x,u) = Lh1 . (4)

Consecutive Lie derivatives form the matrix:

O(x,u) =
[
∇Lh0 ∇Lh1 ∇Lh2 . . .

]T
, (5)

where ∇Lh0 =
∂Lh

0

∂x . The matrix O(x,u) formed from the sensor model and its
Lie derivatives is known as the nonlinear observability matrix. This matrix has
(theoretically) infinite number of rows and number of columns equal to the number of
states. Following Hermann and Krener (1977), if the observability matrix evaluated at
a state x0 has full column rank, then the nonlinear system is weakly locally observable
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at x0. Unlike linear systems, nonlinear observability is a local property that is input-
and state-dependent.

It is worth noting that the observability of the system is a binary property and
does not quantify how well observable the system is, which limits its utility for
gradient-based methods. Observability analysis also does not take into account the
noise properties of the system.

4 Expanded Empirical Local Observability Gramian (E2LOG):
A Metric for Quality of Observability

Following Krener and Ide (2009) and according to the definition presented in Sec. 3.1,
we introduce the notion of quality of observability. A state is well observable if the
system output changes significantly when the state is marginally perturbed (Weiss
2012). A state with this property is robust to measurement noise and is highly
distinguishable within some proximity where this property holds. Conversely, a state
that leads to a small change in the output, even though the state value was extensively
perturbed, is defined as poorly observable. In the limit, the measurement does not
change even if we move the state value through its full range. In this case, the state
is unobservable (Hermann and Krener 1977).

4.1 Taylor Expansion of the Sensor Model
In order to model the variation of the output in relation to a perturbation of the state,
we approximate the sensor model using the n-th order Taylor expansion about a time
point t0:

ht0(x(t),u(t)) =

n∑
i=0

(t− t0)i

i!
hi(x(t0),u(t0)), (6)

where ht0 represents the Taylor expansion of h about t0 with the following Taylor
coefficient: hi:

hi(x(t0),u(t0)) =
∂i

∂ti
(h(x(t0),u(t0))) = Lhi (x(t0),u(t0)) (7)

Using this result, one can also approximate the state derivative of the sensor model
∂
∂xh(x(t),u(t)). For brevity, we introduce the notation δt = t− t0 and omit the
arguments of the Lie derivatives:

∂

∂x
ht0(x(t),u(t)) =

n∑
i=0

δti

i!
∇Lhi . (8)

This result in matrix form is:

∂

∂x
ht0(t) =

[
I δtI δt2

2 I . . . δtn

n! I
]
O(x(t0),u(t0)), (9)

where O(x(t),u(t)) is the nonlinear observability matrix, whose theoretically infinite
row dimension corresponds with the theoretically infinite Taylor series.
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Eq. 9 describes the Jacobian of the sensor model h with respect to the state x around
the time t0. Using this Jacobian, we are able to predict the change of the measurement
with respect to a small perturbation of the state. This prediction not only incorporates
the sensor model but it also models the dynamics of the system via high order Lie
derivatives. Hence, in addition to showing the effect of the states that directly influence
the measurement, Eq. 9 also reveals the effects of the varying control inputs and the
states that are not included in the sensor model. This will prove useful in Sec. 4.3.

4.2 Observability Gramian
In this section, we develop observability metrics independently of any particular
trajectory parameterization. We suppose an abstract parameterization θ such that the
system state xθ(t) and control inputs uθ(t) at any moment in time t can be computed
from the parameters θ. Additionally, θ is implied to include the total time duration T
of the trajectory.

In addition to the change in the output with respect to the state perturbation, one
must take into account the fact that different states can have different influence on the
output. Thus, a large effect on the output caused by a small change in one state can
swamp a similar effect on the output caused by a different state and therefore, weaken
its observability. In order to model these interactions, following Krener and Ide (2009),
we employ the local observability Gramian (LOG):

Wo(θ) =

∫ T

0

ΦTθ (t)HT
θ (t)Hθ(t)Φθ(t)dt. (10)

In (10), Φθ(t) is the state transition matrix induced by the trajectory θ, defined as the
solution to the differential equation:

d

dt
Φ(t) = Fθ(t)Φ(t) (11)

where Fθ(t) represents linear time-varying dynamics linearized about the trajectory
θ (Krener and Ide 2009). Hθ(t) is the Jacobian of the sensor model Hθ(t) = ∂

∂xh(x)
evaluated at the state xθ(t). Since a nonlinear system can be approximated by a linear
time-varying system by linearizing its dynamics about a nominal trajectory, one can
also use the local observability Gramian for nonlinear observability analysis. If the
rank of the local observability Gramian is equal to the number of states, the original
nonlinear system is locally weakly observable (Hermann and Krener 1977).

Krener and Ide (2009) introduce measures of observability based on the
condition number or the smallest singular value of the local observability Gramian.
Unfortunately, the local observability Gramian is difficult to compute for many
nonlinear systems. In fact, it can only be computed in closed form for certain
simple nonlinear systems. To deal with this, the local observability Gramian can be
approximated numerically by simulating the sensor model for small state perturbations,
resulting in the empirical local observability Gramian (ELOG) (Krener and Ide 2009):

Wo(θ) ≈
1

4ε2

∫ T

0

[
∆z1

θ(t) . . . ∆znθ (t)
]T [

∆z1
θ(t) . . . ∆znθ (t)

]
dt, (12)
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where ∆ziθ is the change in simulated measurement caused by perturbing the ith

component of the initial state x0 by a small amount and integrating the control sequence
uθ induced by the trajectory θ:

∆ziθ(t) = h(x(x0 + εei, uθ, t))− h(x(x0 − εei, uθ, t)) (13)

where ei are the standard basis vectors. Krener and Ide (2009) state it can be shown
that that the empirical local observability Gramian in Eq. 12 converges to the local
observability Gramian in Eq. 10 for ε→ 0.

The main disadvantage of this approximation is that , to obtain x(x0 + εei, uθ, t), it
depends on integrating the forced ordinary differential equation of the system dynamics
defined by the perturbed initial states x0 + εei and the control sequence uθ. Systems
of interest in the robotics domain are often second-order, nonlinear, unstable, and have
no closed-form solutions. Combined with the potentially long time duration of the
trajectories under consideration, this poses a challenging task for numerical integration.
If the integration scheme accumulates error, it will contribute to the measure of
observability in a way that is indistinguishable from the contribution of the trajectory
itself. (We show an example of such error in Sec. 8.3.) This issue can be avoided
only if the states of interest appear exclusively in the measurement model and not
in the system dynamics. In such cases, the ELOG can be computed by perturbing the
state trajectory xθ directly without numerical integration. In the following section, we
propose an alternative measure of observability that captures the contribution of states
that appear in the system dynamics without requiring numerical integration.

4.3 Definition of E2LOG
In order to present the hereby proposed measure of observability concisely, we
introduce the following notation:

Kθ,t0(t) =
∂

∂x
ht0(xθ(t),uθ(t)). (14)

Note that computing K requires a nominal value of all the self-calibration states xsc.
In the spirit of the local observability Gramian, we define the integral of the Taylor
expansion of the sensor model over a limited time horizon as follows:

W̃t0,H(θ) =

∫ H

0

Kθ,t0(t0 + t)TKθ,t0(t0 + t)dt. (15)

Note that W̃t0,H , encompasses the dependency of the input-output map on both the
measurement function and the system dynamics via the higher-order Lie derivatives
contained in Kθ,t0 . By capturing these dependencies analytically via a suitably high-
order Taylor expansion, we replace 2N numerical integrals (for N -dimensional state)
required by the LOG with a single closed-form expression. However, this expression
is only useful for short time horizons H due to the approximation error of the
Taylor series. We thus propose an alternate measure of observability defined by
summing Eq. 15 at multiple points along the trajectory θ:

W̃o(θ) =

N∑
k=0

W̃k∆t,∆t(θ), where ∆t =
T

N
, (16)
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where the number of steps N is a fixed parameter, chosen empirically, that enables us
to see the effects of the system dynamics while maintaining reasonable approximation
error in the Taylor expansion. To measure the quality of observability we use the
smallest singular value of W̃o(θ)

†. We refer to the matrix W̃o as the Expanded
Empirical Local Observability Gramian (E2LOG). While this matrix is not a direct
approximation of the local observability Gramian, we retain the name due to the
very similar structures and goals of the two quantities. We also note that the local
observability Gramian itself is based on the approximation of a nonlinear system by a
linear time-varying system. By using a higher-order Taylor expansion of the dynamics
in Eq. 14, the E2LOG analytically captures higher-order properties of the input-output
map which are not captured in the LOG due to the linearization step.

The E2LOG can be seen as a cross-correlated measure of the sensitivity of the
measurements with respect to state variations. Maximizing the smallest singular value
leads to maximizing the observability of the least observable subspace of xsc. In
contrast, maximizing the condition number or trace of the E2LOG are less appropriate.
The condition number captures only the ratio between the most observable and least
observable subspaces and does not favor large values per se. Similarly, maximizing the
trace, which can be expressed as the sum of the eigenvalues, may reward trajectories
that render one state very well observable while other states are unobservable.
Maximizing the determinant, as the product of the eigenvalues, could be considered as
an alternative but would still mix influences of well and weak observable dimensions.

To measure the observability of a subset of the states, one can select the submatrix
of the E2LOG corresponding to the states of interest, and analyze the singular values of
this submatrix only. We use this technique to focus on different self-calibration states
of the system.

4.4 Multi-State E2LOG
In general, entries in theK matrices (14) may have widely different magnitudes. These
magnitudes depend on many factors, including the physical units, measurement model,
system dynamics, and the expected values of the self-calibration states. As mentioned
in Krener and Ide (2009), scaling of these states is needed to ensure that the E2LOG
smallest-singular-value metric balances the influence of all states equally. We introduce
a column scaling in the form of

K ′ = K diag(s)−1 (17)

as each column ofK reflects the sensitivity of the measurement function with respect to
one state. In general, it is not possible to obtain a closed-form solution for the expected
values of the K matrix for a given system due to the presence of nonlinear dynamics
and nonlinear sensor models. The values of s are therefore determined with a Monte
Carlo approximation to a uniform sampling from the distribution of K matrices for the
given system using the following procedure:

†The matrix W̃o is positive semidefinite, so maximizing the smallest eigenvalue instead of the smallest
singular value would be equivalent, stable, and more computationally efficient by constant factors (Trefethen
and Bau 1997). We retain the singular value formulation to be consistent with Krener and Ide (2009).
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• Sample a set of several physically plausible random trajectories ranging from
stationary to near the physical limits of the dynamic model.

• For each trajectory, randomly sample multiple sets of realistic self-calibration
parameter values xsc.

• For each trajectory-parameter pair, evaluate K at many points in time along the
trajectory.

• Let si be the standard deviation of all entries in the ith column of all K matrices
generated with this procedure.

In Sec. 8.2, we demonstrate that for our example system, using this scaling process in
a joint optimization for all self-calibration states can produce trajectories that perform
nearly as well as trajectories optimized for the individual states in isolation.

This procedure aims to eliminate issues caused by different scales of the elements
of the K matrices. In particular, states that minimally contribute to the magnitude of
change of the measurement may be swamped by other states than have much larger
absolute values (e.g. position of the vehicle in the world frame vs. the accelerometer
bias). In our experiments, this problem caused our nonlinear optimization tools to fail at
optimizing the trajectory jointly for multiple states according to the E2LOG objective,
returning results close to the initial guess. By applying a scaling factor to the columns
of theK matrix, we retain important properties ofK such as the ratio between different
partial measurement derivatives w.r.t. different states, while improving the behavior of
E2LOG as an optimization objective. It is sufficient to perform this procedure once for
a given system definition and use the stored s vector for different problem instances.

5 Trajectory Optimization Methods for E2LOG
The trajectory optimization problems considered in this paper can be stated as follows:

maximize σmin(W̃o(θ))

subject to θ suitable for task
θ dynamically feasible

(18)

In this section, we introduce trajectory optimization methods for optimizing E2LOG
for differentially flat systems. The class of differentially flat systems includes many
vehicles which might require online self-calibration, such as cars, tractor-trailers, fixed-
wing aircraft, and quadrotor helicopters (Martin et al. 2003; Mellinger and Kumar
2011). However, we emphasize that the E2LOG cost function itself is not restricted
to differentially flat systems.

For a differentially flat system, there exists a set of flat outputs y such that, given a
trajectory yθ(t), the system states xθ(t) and control inputs uθ(t) can be computed as
functions of the flat outputs yθ and a finite number of their derivatives:

xθ = ζ(yθ, ẏθ, ÿθ, ...,
(n)
yθ), uθ = ψ(yθ, ẏθ, ÿθ, ...,

(m)
yθ ). (19)

This assumption allows us to plan trajectories in the space of flat outputs that guarantee
kinematic feasibility as long as the trajectory is sufficiently smooth.
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We now describe two different realizations of the trajectory parameterization θ
and the corresponding optimization problems. Both result in piecewise polynomial
trajectories, but favor different tasks. For generating closed-loop self-calibration
trajectories, we use a null-space representation that reduces the number of optimization
variables. For planning trajectories through a map with obstacles, we use a Bézier curve
formulation, where we can constrain the trajectory to lie inside a corridor of pairwise
intersecting convex polytopes using only linear constraints on the decision variables.

5.1 Piecewise Polynomial Null-Space Basis
A d-degree, q-piece piecewise polynomial takes the form:

y(t) =


pT1 t(t) if t0 ≤ t < t1
...
pTq t(t) if tq−1 ≤ t ≤ tq,

(20)

where pi ∈ Rd+1 is the vector of polynomial coefficients for the ith polynomial piece,
and t is the time vector, i.e.:

t(t) =
[
t0 t1 . . . td

]T
. (21)

As detailed in Müller and Sukhatme (2014); Hausman et al. (2017), waypoint and
continuity constraints on the trajectory can be represented as a linear system:

A
[
pT1 . . . pTq

]T
, Ap = b. (22)

With a high enough degree d, this system is underdetermined. We can therefore
represent any solution by the form:

p = p∗ + Null(A)ρ, (23)

where p∗ is any particular solution of Ap = b, such as the minimum-norm solution
provided by the Moore-Penrose pseudoinverse. This converts an optimization problem
over the space of waypoint- and continuity-satisfying piecewise polynomials from a
constrained, q(d+ 1)-dimensional problem into a smaller, unconstrained problem over
the null space weights ρ. The one-dimensional formulation given here extends naturally
to higher-dimensional outputs. Since the gradient ∂

∂pσmin(W̃o) of the E2LOG objective
with respect to the polynomial coefficients is not easily computed, we approximate the
gradient by forward differences; therefore reducing the number of variables speeds up
optimization significantly.

5.2 Bézier Basis
In practical robot deployments, it may be useful to have the ability to self-calibrate
while performing some other task, rather than pausing to execute a closed-loop
calibration trajectory. For a mobile robot, this means the robot should optimize its
trajectory for self-calibration while moving from a start position to a goal position
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and avoiding environmental obstacles. However, using polynomial coefficients as
optimization variables is not well suited to problems with complex configuration space
obstacles, and this property extends to the null-space basis. In previous work on
polynomial trajectories Richter et al. (2013), the authors check collisions at a finite set
of sampled points, and resolve them by adding waypoints from a known safe piecewise
linear trajectory. However, this method may fail to detect collisions in between the
sample points, and each resolved collision requires re-solving the optimization problem
with more variables. Instead, we use a Bézier curve basis similar to Tang and Kumar
(2016); Flores (2008) that provides collision avoidance guarantees.

We assume that a map of configuration space obstacles is available and that a
high-level planner has identified a corridor of pairwise-overlapping convex polytopes
containing some kinematically feasible path from start to goal position in the map.
Such a corridor can be found using, e.g., the method of Deits and Tedrake (2015).
We seek a trajectory from start to goal that minimizes our E2LOG cost function while
remaining inside this corridor. From the high-level planner, we are given the start and
goal positions ystart, ygoal ∈ Rk (where k is the dimensionality of the system’s flat
outputs), and a sequence of n convex polytopes C:

C = P1, . . . ,Pn, Pi = {x ∈ Rk : Aix ≤ bi}, (24)

where (Ai ∈ Rm×k, bi ∈ Rm) is the half-space representation of the polytope Pi.
Furthermore, we require that a path from ystart to ygoal exist in C:

Pi ∩ Pi+1 6= ∅, ystart ∈ P1, ygoal ∈ Pn. (25)

Note that the requirement of overlap between adjacent Pi is sufficient to ensure that
a kinematically feasible path exists because we are working with a differentially flat
system. Also note that there is no limit on the amount of overlap between any pair
Pi,Pj and that Pi need not be bounded in general.

We seek a q-piece polynomial trajectory such that the ith polynomial piece is
contained in Pi. Bézier curves provide a natural basis for expressing such trajectories.
A degree-d Bézier curve is defined by a sequence of d+ 1 control points yi ∈ Rk and
a fixed set of Bernstein polynomials, such that

y(t) = b0,d(t)y0 + b1,d(t)y1 + · · ·+ bd,d(t)yd (26)

for t ∈ [0, 1], where each bi,d is a degree-d polynomial with coefficients given by Joy
(2000). This form may be interpreted as a smooth interpolation between y0 and yd. The
curve begins at y0 and ends at yd. In between, it does not pass through the intervening
control points, but rather is guaranteed to lie in their convex hull. This follows directly
from the fact that, on the interval [0, 1], the Bernstein polynomials are nonnegative and
form a partition of unity (Joy 2000), making any point in the form of Eq. 26 a convex
combination of the control points yi. Thus, when using control points as decision
variables, constraining the control points to lie inside the polytope Pi guarantees that
the resulting curve will lie inside Pi also. Polytope constraints on the control points are
given by the linear inequalities in Eq. 24.

Enforcing arbitrary levels of continuity in piecewise Bézier curves is also easy. The
derivative of y(t) as denoted in Eq. 26 is another Bézier curve of degree d− 1, with
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control points that are scaled forward differences of the control points of y(t):

y′(t) = db0,d−1(t)(y1 − y0) + · · ·+ dbd−1,d−1(t)(yd − yd−1) (27)

This is a linear transformation of the control points. We may apply this relationship
recursively to generate equality constraints on the control points of adjacent pieces up
to the desired level of smoothness.

In comparison to the null-space formulation, the Bézier basis is desirable because
it guarantees a collision-free path through the corridor using only linear constraints.
However, the number of optimization variables is larger than in the null-space
formulation, and additional nonlinear constraints are still needed to enforce dynamic
limits. Thus, optimization in the Bézier basis is somewhat slower than in the null-
space basis. It is also true that the Bézier basis is conservative: for a polytope P ,
there exist control points y0, . . . , yd such that some yi /∈ P but the Bézier curve
through y0, . . . , yd lies inside P . However, for the problem instances considered in
this paper, the conservatism of the Bézier basis does not prevent our method from
finding trajectories that perform well in experiments.

Both the null-space and Bézier bases require that the user specify the time interval
for each polynomial piece. For the closed-loop self-calibration problem this is of little
concern, but in the Bézier basis it introduces an undesirable coupling between the size
of the polytopes Pi and the speed of the robot moving through those polytopes. This
issue can be addressed by several means:

1. allocating different durations to polytopes according to a size-based heuristic,
2. subdividing large polytopes until all polytopes are roughly the same size,
3. “growing” the polytopes so their overlap is maximized, allowing the optimizer

more freedom to control the relative sizes of polynomial segments, or
4. including time allocations as additional optimization variables.

Of these, 3 is preferable because it relaxes the polytope-polynomial coupling without
increasing the size of the optimization problem.

5.3 Numerical Optimization Method
In general, the E2LOG objective function is nonconvex in both the null-space and
Bézier bases. We are therefore limited to local optimization methods. We use the
MATLAB implementation of Sequential Quadratic Programming (SQP), which can
enforce nonlinear constraints such as maximum motor thrust via barrier functions.
Empirical tests showed that SQP performs faster than interior-point methods on our
example problems. Multi-start optimization can be used to obviate the concern of
picking an unusually bad initial guess. We compute the smallest singular values of the
E2LOG using a standard Singular Value Decomposition (SVD). The SVD contributes
negligible computation time, since evaluating the E2LOG cost function requires only
one SVD, compared to the numerous nonlinear function evaluations required to
approximate the integral (16). With an appropriate implementation, computing the
SVD is numerically stable for any matrix (Trefethen and Bau 1997).

In closed-loop self-calibration problems using the null-space basis, we generate
initial guesses of ρ in (23) by randomly sampling from a normal distribution and
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discarding samples that violate the nonlinear physical constraints (e.g. thrust limits).
However, for corridor problems in the Bézier basis, generating a feasible initial guess
is nontrivial. One could solve a feasibility linear program to satisfy the continuity and
polytope constraints, but this solution is not guaranteed to satisfy the nonlinear physical
constraints, and often does not in our experience. Instead, we minimize an integrated-
squared-derivative cost function using quadratic programming as in Tang and Kumar
(2016) and use the solution as an initial guess. The order and relative weights of the
derivatives in this cost function should be chosen based on an analysis of the system
dynamics as they relate to the differentially flat variables.

5.4 Online Replanning
It may not always be desirable to modify the entire mission plan for the sake of
self-calibration. We may prefer to ignore the observability objective during normal
operation and modify the trajectory for observability only when the robot detects that
its state estimation is performing badly. The modification should be bounded to a short
time horizon, after which the robot returns to its previously defined plan. We explore
this idea in this section.

For such a replanning method to be useful, its computation must be fast. Our SQP-
based optimization method is not suitable, as it requires a few seconds to plan even a
short trajectory. However, when considering the specific mission of replanning while
navigating through a corridor, we observe that the feasible solution set is relatively
small compared to optimizing a full trajectory. It is bound by the short time horizon,
dimensionality of the polynomial basis, corridor constraints, physical limits of the
robot, and the requirement of high-order continuity between the modified segment and
the original trajectory. With this fact in mind, a sampling-based approach becomes a
valid alternative to full SQP optimization. A uniform sample from the set of feasible
trajectory modifications can adequately explore the solution space without requiring
many thousands of samples.

Suppose a robot is navigating through a polytope corridor, using energy-minimizing
trajectory optimization, when the ground truth value of one of the self-calibration
parameters shifts. There exist multiple ways to detect when recalibration is necessary.
In this work, we assume a consistent probabilistic state estimator that keeps track of
the state uncertainty, which can be used as an indicator of whether recalibration is
needed. Similarly, recalibration could be triggered if several measurements in a row do
not pass the probabilistic inlier-test, e.g. Brumback and Srinath (1987). In this case,
recalibration could ensure that the measurements were not outliers and the system was
indeed miscalibrated. It is out of the scope of this paper to discuss the methods to detect
when recalibration is needed in detail, so we suppose that such a system is available and
detects the problem ‡. We wish to modify the trajectory for the next km ∈ N polynomial
pieces to prioritize observability while remaining inside the corridor. In the Bézier

‡One such method is given by Hausman et al. (2016). This system may also need to interact with the state
estimator and correct any overconfidence in the current estimate uncertainty.
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basis, the set of feasible modifications can be expressed as a convex polytope:

Tm = {y : Amy ≤ bm, Cmy = dm} (28)

where y denotes the concatenated control points of the modified polynomial pieces,
Amy ≤ bm represents the corridor constraints, and Cmy = dm represents continuity
with the preceding and subsequent pieces. The inequality and equality constraints are
identical to those formulated in the original corridor trajectory optimization, except
the position and derivatives at the boundaries are defined by the existing trajectory
plan instead of user input. We denote by y? the current plan for these pieces. Due to the
physical limits of the robot, only a small subset Vm ⊂ Tm can be expected to satisfy the
nonlinear constraints. Since y? is an energy-minimizing trajectory, we approximate the
valid trajectory set by a unimodal distribution centered on y?. We sample trajectories
near y? as follows:

y = y? + Null(Cm)ρ, where ρ ∼ N (0, σ2), and Amy ≤ bm. (29)

We note that, even when km is small, the dimensionality of ρmay be on the order of 10,
and if the inscribed diameter of the polytopes are small relative to σ, a naive rejection
sampling approach can become too slow. This problem is exacerbated by the fact that,
in a nonconvex corridor, the energy-minimizing trajectory is often tight against some of
the corridor inequalities. Instead, we employ generalized hit-and-run sampling (Bélisle
et al. 1993),. a Markov Chain Monte Carlo sampling approach, to sample according
to (29) efficiently. We use the method of Botev (2017) as a subroutine to sample from
a truncated one-dimensional Gaussian distribution.

After sampling according to (29), we discard candidate trajectories that violate
the nonlinear physical limits to form a sample from Vm, and select the modification
ym ∈ Vm that performs best according to the E2LOG metric. The variance parameter
σ2 should be selected such that a majority of trajectories are rejected, thus encouraging
that the limits of Vm are reached. In the simulation experiments (Sec. 8.6), we show
that this approach can execute in under 1/2 second and result in significant improvement
of state estimation compared to following an energy-minimizing trajectory.

6 Remark on Structure of the Optimization Problem

Examining the structure of the σmin(W̃o) objective suggests that its maximization is
fundamentally more difficult than typical trajectory optimization objectives considered
in robotics. Most trajectory optimization algorithms used in robotics assume some
favorable structure to the objective. Some of these structural properties include:

Additivity:

R(θ) =

∫ T

0

[rx(xθ(t)) + ru(uθ(t))] dt, (30)

Monotonicity:
R(θ1|θ2) ≥ R(θ1) (31)

Submodularity:
R(θ1|θ2) ≤ R(θ1) +R(θ2) (32)
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where rx and ru are arbitrary scalar functions, and the | operator denotes trajectory
concatenation in time. We state these properties in terms of a reward R(θ) to be
maximized. Note that we use the term “submodular” in the sense of Hollinger and
Sukhatme (2013), where it is defined in terms of concatenation of sequences. This is
a non-standard definition meant to draw an analogy with the “diminishing returns”
property of standard submodular set functions, which are defined in terms of set unions
and intersections.

Additive objectives exhibit optimal substructure: if A→ B → C is an optimal
trajectory from A to C, then A→ B must also be an optimal trajectory from A to B.
The optimal substructure can be exploited algorithmically via dynamic programming in
“shooting” methods like iLQG (Todorov and Li 2005), and lends a favorable structure
to the objective gradient in “collocation” methods such as CHOMP (Ratliff et al. 2009).
Optimal sampling-based planners such as RRT* depend on monotonicity (Karaman
and Frazzoli 2011). Submodular objectives are generally more difficult to optimize than
additive or monotonic objectives, but they exhibit the diminishing returns property that
allows pruning of the search tree using a heuristic, e.g. in the information-gathering
planners proposed by Hollinger and Sukhatme (2013).

Unfortunately, the E2LOG objective is neither additive, monotonic, nor submodular.
When the integration of (16) is discretized into a summation, the E2LOG objective
takes the general form:

R(θ) = σmin(KT
1 K1 + · · ·+KT

NKN ) (33)

where the matricesKT
i Ki are positive semidefinite, so the smallest singular values and

eigenvalues are equal. Weyl’s inequality states that, for A and B symmetric,

σmin(A) + σmin(B) ≤ σmin(A+B). (34)

For example,

A =

[
1 0
0 0

]
, B =

[
0 0
0 1

]
, A+B =

[
1 0
0 1

]
(35)

σmin(A) = 0, σmin(B) = 0, σmin(A+B) = 1

Therefore, for the E2LOG objective,

R(θ1|θ2) ≥ R(θ1) +R(θ2) (36)

This corresponds with the intuition behind the σmin metric: even if some of the
states are well observable, the trajectory is considered poor unless all states are
well observable. However, the simple example (35) also provides a counterexample
to additivity, monotonicity, and submodularity for the E2LOG objective. In the
terminology of Hollinger and Sukhatme (2013), (36) would classify the E2LOG
objective as “supermodular”. However, standard greedy and bounded-suboptimal
methods for supermodular set function maximization (described e.g. by Vondrák
(2007)) do not directly apply to the concatenative definition of supermodularity.
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The result (36) explains the difficulty of applying some widely-used trajectory
optimization methods for continuous dynamical systems to the E2LOG. We may
thus be motivated to consider graph-based discrete approaches instead. This does
not lead to a tractable problem. In Appendix A, we show that a straightforward
conversion of the continuous problem to a graph approximation results in an NP-
complete problem. These results suggest that a major improvement in computational
efficiency or global optimality would require a modification of the problem itself rather
than the introduction of new computational methods.

7 Example Systems
In this section, we introduce the systems used to demonstrate our approach in
simulation and real robot experiments. We analyze a quadrotor helicopter equipped
with two different sensor suites: a GPS-IMU pair and a loosely coupled visual-inertial
odometry (VIO) system.

We emphasize that the method presented in this work is generic. No part is specific
to quadrotors or state estimation tasks related to SE(3). We choose to analyze the
quadrotor due to its relative simplicity and our familiarity from prior work.

7.1 Quadrotor Helicopter
Dynamical properties of the quadrotor helicopter have been extensively analyzed in
the robotics and control literature. It is common to formulate the dynamics such that
the IMU measurements, instead of motor thrusts, act as system inputs. Following this
approach, we represent the system state as:

xcore =
[
piw

T
, viw

T
, qiw

T
, bω

T , ba
T
]T

(37)

where piw, viw and qiw are the position, velocity and orientation (represented as
a quaternion) of the IMU in the world frame. bw and ba are the gyroscope and
accelerometer biases, respectively. We classify these as the core states because their
dynamics are independent of the choice of measurement sensor suite. The core states
are governed by the following differential equations:

ṗiw = viw

v̇iw = CT
(qi

w)(am − ba − na)− g

q̇iw =
1

2
Ω(ωm − bω − nω)qiw

ḃw = nbω , ḃa = nba ,

(38)

where C(q) is the rotation matrix obtained from the quaternion q, g is the gravity
vector in the world frame, Ω(ω) is the quaternion multiplication matrix of ω, am
is the accelerometer signal, and ωm is the gyroscope signal. The accelerometer and
gyroscope measurements are corrupted by additive white Gaussian noise na and nω
respectively. Since the IMU biases can change over time, they are modeled as random
processes where nbw

and nba
are zero-mean Gaussian random variables.

Prepared using sagej.cls



Preiss et al. 19

As shown by Mellinger and Kumar (2011), the quadrotor dynamics are differentially
flat. This means that a quadrotor can execute any smooth trajectory in the space of flat
outputs as long as the trajectory respects the physical limitations of the system. The
flat outputs are x, y, z position and yaw angle (heading) θ. The remaining extrinsic
states, i.e. roll and pitch angles, are functions of the flat outputs and their derivatives.
The motor thrust commands map linearly to angular accelerations in the body frame,
which correspond to the fourth derivative of position. We therefore require trajectories
to be continuous up to the fourth derivative to ensure physical plausibility. We
also place inequality constraints on thrust-to-weight ratio (≤ 1.5), angular velocity
(≤ π rad sec−1), and deviation from vertical orientation (≤ π/4 rad). These values
allow fairly quick movements but disallow racing-level aggressiveness.

7.2 GPS-IMU Sensor
The combination of a Global Positioning System (GPS) reciever and a 6-DOF Inertial
Measurement Unit (IMU) is a popular choice for quadrotors operating in open outdoor
spaces for applications such as cinematography. The GPS reciever supplies a relatively
noisy, low-bandwidth measurement of the vehicle’s position in world coordinates.
Noise and low bandwidth limit the quality of a velocity estimate obtained from the
GPS alone. Thus, the accelerometer plays an important role in velocity estimation, so
its calibration is important.

The GPS introduces the additional self-calibration state ppi representing relative
position between the GPS module and the IMU in the IMU frame. Assuming the
connection between the IMU and the GPS sensor is rigid, we define the GPS sensor
model:

zgps = hgps(xcore, p
p
i , nzgps

) = piw + CT
(qi

w)p
p
i + nzgps

, (39)

where nzgps
is white Gaussian measurement noise. The nonlinear observability

analysis in Kelly and Sukhatme (2011) and Weiss (2012) shows that the system is fully
observable with appropriate inputs. The nonlinear observability matrix of this system
becomes full-rank after including the 5th Lie derivative, hence, this is the order of the
Taylor expansion we used for experiments.

7.3 Visual-Inertial Sensor
Vision-based navigation is also popular for quadrotors. Visual input allows obstacle
avoidance and operating in GPS-denied environments, while avoiding the weight and
ambient light issues associated with active sensors such as LIDAR. The camera image
is input to a visual odometry algorithm (e.g. Klein and Murray (2007)) which estimates
the system’s 3D position in undefined scale, and scale-free attitude estimations with
respect to its own visual frame. The visual-inertial system requires estimating a high-
dimensional set of calibration parameters in different physical units and scales, creating
a challenging task for trajectory optimization. The additional system states consist of
the following:

xvis =
[
λ, pci , qci , pwv , qwv

]
(40)
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where λ is the visual scale, pci and qci are the relative position and orientation between
the camera and the IMU in the IMU frame, and qwv can be seen as the direction of
the gravity vector in the visual map Kelly and Sukhatme (2011) which drifts over time
due to accumulated errors in the visual framework. pwv is the analogous visual drift
in position. This setup is also known as a loosely coupled visual-inertial odometry
approach and is described in more detail in Weiss et al. (2013).

Assuming the connection between the IMU and the camera is rigid, we define the
visual sensor model following Weiss et al. (2013):

zpv = hp(x,nzpv
) = pwv + λCT

(qw
v )(p

i
w + CT

(qi
w)p

c
i ) + nzpv

,

zqv = hq(x,nzqv
) = qci ⊗ qiw ⊗ qwv + nzqv

,
(41)

where nzpv
and nzqv

are white Gaussian measurement noise variables and ⊗ denotes
quaternion-quaternion multiplication. The nonlinear observability analysis in Kelly and
Sukhatme (2011) and Weiss (2012) shows that the system is observable up to the global
position and heading only with appropriate inputs. The nonlinear observability matrix
of this system has maximal rank after including the 4th Lie derivative, hence, this is the
order of the Taylor expansion we use for generating the E2LOG in our experiments.

8 Simulation Experimental Results
In this section, we present simulation experiments for both the GPS-IMU and visual-
inertial sensor suites. A simulation environment provides the important benefit of
known ground truth values for the self-calibration parameters. Many of the parameters
considered in this paper are not easy to measure on real robots. In whole-trajectory
planning experiments, we represent trajectories as degree-7 polynomials with C4

continuity and require that all derivatives be zero at the beginning and end points.
Online replanning requires a degree of 8 to maintain enough degrees of freedom. The
integration step and the time horizon (∆t) for E2LOG are 0.1s.

As mentioned in earlier, our method is not specific to any particular type of state
estimator. However, to judge the effectiveness of a trajectory for self-calibration, we
wish to simulate a robot following the trajectory and measure the accuracy of the
robot’s state estimate relative to the ground truth. This requires a choice of state
estimator to use for the experiments. We employ the popular Extended Kalman
Filter (EKF) for all experiments. In particular, we use the indirect formulation of an
EKF Lynen et al. (2013) to avoid the singular covariance matrix associated with the
unit quaternion invariant Lefferts et al. (1982). We choose this state estimator due
its ability to work with various sensor suites and proven robustness in the quadrotor
scenario. Other possible choices include Unscented Kalman Filters, particle filters, or
batch nonlinear least-squares estimation.

8.1 Correlation between E2LOG and estimation accuracy
We first aim to demonstrate that σmin(W̃o(θ)) is correlated with the quality of the
state estimate obtained from traversing the trajectory θ. We demonstrate this first
on the GPS-IMU system in a closed-loop self-calibration task without obstacles. We
generate random trajectories by sampling a zero-mean Gaussian distribution for each
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Figure 2. Self-calibration task: final RMS error values for the accelerometer bias ba and
the GPS position in the IMU frame pp

i obtained using optimization (green) and 3 different
heuristics: star and figure eight trajectories from Fig. 1 and randomly sampled trajectories
that are close of the physical limits of the system.

optimization variable, i.e. each column of the null space of the piecewise polynomial
constraint matrix described in Sec. 5.1. The standard deviation of the distribution is
chosen to be large, such that some of the generated trajectories violate the system’s
physical limits (listed in Sec. 7.1) and are discarded. This biases the remaining
trajectories towards “exciting” system inputs that should lead to good observability.
We then used each random trajectory as an initial guess for E2LOG optimization.
In this experiment, we optimize for observability of only the GPS-IMU offset, ppi .
Results are shown in Fig. 2. In both plots, the x-axis corresponds to the optimization
objective −σmin(W̃o(θ)) considering ppi only. Note that the objective is negated for
compatibility with the optimization package, which assumes a minimization problem.
The y-axis corresponds to the final estimate error for the accelerometer bias ba (left)
and for the GPS-IMU offset ppi (right). PL-random are the randomized trajectories
described above. Figure 8 and star are the heuristic trajectories presented in Fig. 1, and
our method are trajectories generated from our optimization framework using the PL-
random trajectories as initial conditions. While the star trajectory and some of the PL-
random trajectories perform well on ba, our approach outperforms all other methods on
ppi . These plots illustrate that the E2LOG objective is strongly correlated with the final
estimation accuracy in the chosen states, but only weakly correlated with the accuracy
in self-calibration states that were not included in the E2LOG.

8.2 Validation of multi-state E2LOG scaling
To validate our proposed multi-state E2LOG scaling procedure, we compare
trajectories jointly optimized for all self-calibration states against trajectories
individually optimized for a single self-calibration state. We generate closed-loop
trajectories using the null space polynomial basis. We conduct this experiment on
the visual-inertial system because its self-calibration states comprise many different
physical units with different ranges, so scaling is essential. The experimental method
is as follows:

• Generate a set T of random trajectories near the physical limits of the system
using the method described in Sec. 8.1.
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Figure 3. Comparison between trajectories jointly optimized for all self-calibration states
(blue triangles), trajectories separately optimized for individual self-calibration states (green
stars), and randomly generated trajectories that excite the system near its physical limits
(purple circles). x-axes represent E2LOG cost for individual state only. y-axes represent
EKF estimation error of individual state at trajectory termination. Shaded ellipses indicate
one-σ principal component boundaries of each trajectory class.

• Generate a set Tj of trajectories jointly optimized for all self-calibration states
by using each trajectory in T as an initial guess for gradient-based optimization,
using the multi-state scaling described in Sec. 4.4.

• For each self-calibration state s, generate a set Ts of trajectories optimized for
s by using T as initial guesses and removing the rows and columns from the
E2LOG correspoding to other self-calibration states.

• For each self-calibration state s, measure how well the EKF estimates the ground
truth value of s for each trajectory in T , Tj , and Ts.

Results of this procedure are shown as scatter plots in Fig. 3. Note that we do not
optimize for the state pwv as the global position of this system is unobservable Kelly
and Sukhatme (2011). In each scatter plot, the x−axis corresponds to the negated
σ-min E2LOG cost function for the individual calibration state s, and the y−axis
corresponds to the estimation error of s in the EKF at the end of the trajectory. Each
marker represents one trajectory. Final error for each trajectory is averaged over five
sets of randomly sampled ground truth self-calibration parameters. We see that, while
the jointly optimized trajectories do not score as highly on the individual-state E2LOG
cost functions, they perform equally well or nearly as well in the EKF error metric. This
suggests that the multi-state E2LOG successfully balances the goals of optimizing each
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Figure 4. Illustration of numerical instability when applying ELOG to states that do not
appear in sensor model. ELOG requires representing the trajectory as a control sequence
and integrating the controls numerically to see the states in the ELOG. Inherent instability of
high-order numerical integration leads to divergence from the true trajectory.

self-calibration state. Note that, in initial experiments without column scaling, SQP
frequently terminated at a solution near the initial guess, indicating that the unscaled
cost function is poorly conditioned with respect to the optimization variables.

Both the individual and joint optimized trajectories significantly exceed the
performance of random trajectories on the ba, pci , and qwv parameters. On qci , all three
classes perform roughly equally, but we note that the typical estimation error of 0.2
degrees is very low and can be considered successfully converged in all cases. On λ,
the joint optimized trajectories perform equally well as the random trajectories, but
here the estimation error of 0.3% is also quite small.

8.3 Example of ELOG numerical stability issue
In Sec. 4.3, we mentioned that numerical instability can arise from using the Empirical
Local Obserability Gramian (ELOG) as proposed by Krener and Ide (2009). We
now show an example of this issue. In the IMU-driven formulation of the quadrotor
dynamics (38), the IMU bias terms appear only when the control signal is integrated
into the state. To see these biases in the ELOG, we must thus represent the trajectory
as a sequence of control inputs rather than as a sequence of states. Since the quadrotor
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system is differentially flat in (x, y, z, θ), we can design a trajectory in state space
and derive the control inputs needed to achieve the trajectory using the flatness
property. However, the quadrotor dynamics are second-order in the accelerometer
input and third-order in the gyroscope input. The high-order dynamics make numerical
integration of the control sequence unstable. In our experiments, even with accurate
ODE integration scheme such as RK4 (Butcher 1996), the state-space trajectory
obtained from integrating the controls drifts away from the nominal trajectory. An
example is shown in Fig. 4. The integrated control sequence (red line) diverges
significantly from the state-space trajectory (green).

8.4 Comparison to EKF-trace-minimization and heuristics
To explore the characteristics of E2LOG-optimized trajectories in greater detail, we
compare them to several competitive baselines. To the best of our knowledge, the
only other widely-used cost function that reflects the convergence of the system states
is based on the estimate covariance in a simulated state estimator. Minimizing the
trace of the covariance results in minimizing the uncertainty about the state for all
of its individual dimensions Beinhofer et al. (2013) and yields better results than
optimizing its determinant (i.e. mutual information), as discussed in Hausman et al.
(2015). Therefore, as one baseline of comparison for our approach, we implement the
following cost function based on the covariance in a simulated EKF:

ctrace = δt

n∑
i=1

tr(Psc) (42)

where n is the length of the trajectory discretized into timesteps of length δt and Psc
is the submatrix of the EKF covariance estimate associated with the self-calibration
states xsc. We optimize these trajectories using the same piecewise polynomial basis
and SQP solver used for the E2LOG trajectories. Note that it is not feasible to generate
many EKF-optimized trajectories in the manner of Fig. 3 because optimizing for (42)
took over 50× longer than optimizing for E2LOG.

We also compare against the common heuristic self-calibration trajectories star and
figure-8. These trajectories are designed manually and spatially scaled so they are just
within the same physical constraints used in the optimization procedure. They reflect
the intuition that a good self-calibration trajectory should excite the system in multiple
axes of rotation and translation.

8.4.1 GPS-IMU System For the GPS-IMU system, we collected statistics over 50
EKF simulations for a single representative trajectory from each strategy. Note that
this experiment was performed before we developed the multi-state E2LOG scaling
method, so our trajectory is optimized for the GPS-IMU offset ppi only. Fig. 5
summarizes our results in terms of the RMSE integrated over the entire trajectory
and the final RMSE for accelerometer bias ba and GPS position ppi . Results show
that our approach outperforms all baseline approaches in terms of the final and
integrated RMSE of the GPS position ppi . The only method that achieves a similar
integrated RMSE value for GPS position is the covariance-trace-based optimization.
However, computing that solution takes approximately 13 hours, versus approximately
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Figure 5. GPS-IMU Self-calibration task: statistics collected over 50 runs of the quadrotor
EKF using 6 different trajectories: ours - E2LOG optimized for pp

i only; trace - optimized
trajectory using the covariance-trace cost (42); PL-random - randomly sampled trajectory
that is close to the physical limits of the system; star, figure 8 - heuristics-based trajectories
presented in Fig. 1; random - randomly sampled trajectory that satisfies the constraints. Top
left: GPS position integrated RMSE, top right: GPS position final RMSE, bottom left:
accelerometer bias integrated RMSE, bottom right: accelerometer bias final RMSE.

10 minutes with our method. The main reason for this is the computational load of
the EKF, including matrix inversion at every step, which is more expensive than the
integration of the local observability Gramian used in our approach. The integrated
RMSE of the accelerometer bias ba also suggests that our approach is able to make
this state converge faster than in other methods. Nevertheless, a few other trajectories
such as covariance-trace-based and PL-random were able to perform well in this test.
This is also visible in the final RMSE of the accelerometer bias ba where the first four
methods yield similar results. While our method is slightly worse than the covariance-
trace-based and the two heuristic-based approaches, one needs to take into account that
our method was optimizing for the ppi objective.

The suboptimal performance of the covariance-based method can be explained by
the linearization and Gaussian assumptions of the EKF. These assumptions potentially
introduce inconsistencies to the estimator, in particular for highly nonlinear systems.
Therefore, covariance-based optimization can produce a trajectory where the EKF
under- or overestimates the true state covariance, thus producing a final estimate with
worse RMSE than our method.

8.4.2 Visual-Inertial System Results for the same experiment on the visual-inertial
system are shown in Fig. 7. In this case we use the multi-state E2LOG scaling to
optimize our trajectory for all self-calibration states jointly. The optimized trajectory
performs best in both integrated and final error in all self-calibration parameters,
except for final error in ba where the EKF-trace optimized trajectory is slightly
better. Note that each boxplot represents one trajectory, so larger interquartile range
indicates that the accuracy of state estimate when executing that trajectory varies
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Figure 7. Quartile box plots summarizing final (top) and integrated (bottom) error of EKF
state estimates, aggregated over 30 simulated runs. E2LOG: trajectory jointly optimized for
all self-calibration states using our framework. trace: trajectory minimizing final trace of EKF
covariance in all self-calibration states. PL-rand : random trajectories near the system
physical limits. star, fig-8: common manually designed heuristic self-calibration trajectories.

widely depending on the ground truth values and initialization. These results indicate
that the E2LOG-optimized closed-loop trajectory renders the self-calibration states
more well observable than other trajectories.

An especially interesting result is the trajectories optimized for the visual scale
parameter λ. An example is shown in Fig. 8. The optimizer exploits the entire
optimization space to provide best information – linear acceleration input in the this
case –while respecting the box and dynamic constraints.

8.5 Planning in a corridor
We demonstrate the corridor planning application on the visual-inertial system
using a manually-designed corridor of moderate complexity. As a baseline, we
use a minimum-snap trajectory Minimum-snap trajectory planning with piecewise
polynomials is the prevailing method of energy-minimizing trajectory planning for
quadrotors Mellinger and Kumar (2011); Richter et al. (2013). However, the energy-
minimizing characteristic that makes these trajectories desirable for graceful flight
or aggressive maneuvers can also lead to trajectories that do not excite the system
sufficiently to render the self-calibration states well observable. We compare this to
a trajectory from our framework, optimized for the multi-state E2LOG of all self-
calibration states. The corridor and trajectories are visualized in Fig. 9. The min-snap
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Figure 8. Self-calibration trajectory optimized for estimation of the visual scale parameter λ
in the visual-inertial system. The trajectory fully exploits, but does not violate, the box
constraints to provide best input (acceleration in this case) to the system.

Figure 9. Minimum-snap and E2LOG-optimized trajectories for a UAV navigation task. The
E2LOG trajectory optimizes our proposed observability-based cost function for a
visual-inertial navigation system while remaining inside a corridor of convex polytopes. The
additional movement produces better observability of proprioceptive self-calibration states,
leading to 2× lower position estimate error in a simulated EKF at the end of the trajectory.

trajectory is characteristically smooth. In contrast, the E2LOG-optimized trajectory
displays significant additional movement to excite the system while remaining safely
inside the corridor.

We compare the two trajectories’ fitness for self-calibration by simulating the
EKF over multiple trials (N = 30) for both trajectories. For each trial, we randomly
sample ground truth self-calibration parameters xsc according to Table 1. The EKF is
initialized with an incorrect estimate of the ground truth states, with the errors sampled
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param. distribution error dist. unit description
bω N (0, 0.286) N (0, 0.029) deg/s gyroscope bias
ba N (0, 0.1) N (0, 0.02) m/s2 accelerometer bias
λ N (1, 0.1) N (0, 0.05) ratio visual scale
pci N (0, 0.1) N (0, 0.02) meter vision-IMU position
qci ∈ (S)3 ≈ 3 deg vision-IMU attitude
qwv ∈ (S)3 ≈ 1 deg vision-world attitude

Table 1. Distributions of randomly sampled self-calibration parameters and initial
self-calibration estimate errors for simulation experiments.
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Figure 10. RMSE of position estimate in EKF averaged over 30 simulated trials for
min-snap and E2LOG-optimized trajectories shown in Fig. 9. Ground truth self-calibration
states and EKF initialization errors are randomly sampled for each trial. One-σ bands
illustrate the variation in estimation accuracy over different trials.

randomly according to Table 1. To present the results concisely, we use the root-mean-
square error of the EKF position estimate as a proxy for the overall accuracy of the
self-calibration estimate. This corresponds with the end purpose of self-calibration,
which is to improve the estimation quality of the robot’s fundamental configuration-
space states.

Results are shown in Fig. 10. We plot the mean RMS error of the position estimate at
each timestep. The shaded bands indicate the standard deviation of RMS errors across
the trials at each timestep. These plots show that the E2LOG-optimized trajectory is
generally able to improve its position estimate over time by correcting the initial self-
calibration estimate errors in the EKF. In contrast, the min-snap trajectory displays
poor convergence. The wider standard deviations indicate that the EKF is unable to
correct the initialization errors and is thus highly sensitive to the correctness of the
initial calibration.

8.6 Online Replanning
In this section, we demonstrate an application of the online replanning approach
described in Sec. 5.4 to the visual-inertial system. We start with the same corridor
and minimum-snap trajectory illustrated in Fig. 9. We introduce a small shift in the
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Figure 11. Set of 15 candidate modifications for two polynomial pieces in a seven-piece
trajectory. 100 trajectories satisfying the linear constraints were sampled, of which 85 were
rejected due to violating the nonlinear physical constraints.

ground truth vision-IMU orientation parameter qci on the order of 2 to 5 degrees, as
might be caused by flight vibrations if the equipment mounting is not secure. The
change is modeled as a linear shift, beginning 2 seconds into the flight and lasting for
1 second until the parameter stabilizes again. We suppose that a method is available
that detects the increased uncertainty in state estimation and triggers observability-
aware online replanning. We then use the sampling-based approach to replan the next
two polynomial pieces. A sampled set of candidate trajectories Vm for this problem is
illustrated in Fig. 11.

We illustrate results from this experiment in Fig. 12. In this experiment, we initialize
the EKF with the correct values for the self-calibration parameters so we can focus
on the effect when a sudden error is introduced. The shift in qci is introduced in the
time interval highlighted by the light red box. The estimate errors in both qci and in the
robot position p increase quickly. The system plans the modified trajectory pieces in
0.4 seconds of computation time and flies those pieces in the time interval highlighted
by the grey box. We see that the observability-aware maneuver causes a dramatic
improvement in the qci estimate error and a significant reduction in the RMS error of the
position estimate as well. In contrast, when flying the min-snap trajectory, the errors
remain large because the trajectory does not excite the system enough to render the
parameter well observable. The shaded one-σ bands represent the aggregated results
over multiple trials in which we randomized the ground truth self-calibration values
and the magnitude and direction of the qci shift. We also provide a breakdown of the
computation time in Tab. 2.

9 Real-Robot Experimental Results
In order to show the applicability and effectiveness of our method on real robots,
we deploy it on a Crazyflie 2.0, a small quadrotor that weighs 27 grams and
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Figure 12. Simulation results for online replanning. During the 2-3sec interval, the ground
truth camera-IMU orientation qc

i shifts between 2-5 degrees in a random direction. We
assume that the state estimation system is self-monitoring and detects the problem. The
online replanning system replaces the next two polynomial pieces of the trajectory with an
observability-optimized movement. Error in qc

i estimate (top) and in overall position p
(bottom) are plotted over the duration of the trajectory. One-σ bands illustrate the variation
in estimation accuracy with different random qc

i shifts and noisy measurements, but same
trajectories.

sampling filtering ranking total time sampled rejected best σmin

(sec) (sec) (sec) (sec) (count) (percent) —
0.243 0.078 0.039 0.360 100 82.37 1.473
±0.024 ±0.002 ±0.008 ±0.023 — ±3.94 ±0.202

Table 2. Breakdown of computation time for online replanning over 30 trials with the same
problem instance but different random seeds. Top row: mean. Bottom row: standard
deviation. Maximum total computation time for any trial is 0.42 seconds.

measures 92 millimeters between diagonally opposed rotors. Our experiment compares
performance of figure-eight trajectory, star trajectory, and an optimized trajectory from
our framework on the task of estimating the position of the GPS sensor in the IMU
frame ppi . All trajectories have 5-second duration. To provide a fair comparison, we
adjust the heuristic trajectories until they reach the same physical constraint limits
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figure 8 star ours
ppi

RMSE[m]
0.102±
0.033

0.105±
0.036

0.055±
0.025

ppi cov.
trace[m2]

0.0190±
0.0009

0.0177±
0.0007

0.0093±
0.0004

Table 3. Self-calibration task on a real quadrotor: statistics of the final RMSE values and
final trace of the covariance matrix for GPS sensor position in the IMU frame pp

i . Data
collected for 8 trials with random pp

i values sampled uniformly from the 0.3m sphere. All
trajectories last 5 seconds.

used to generate the optimal trajectory. We focus on the ppi self-calibration parameter
because, unlike IMU biases, we can generate its ground-truth value.

The experiment consists of 8 trials performed in a motion capture setup. For each
trial we generate a ground truth ppi by taking a uniform random sample from the 0.3m
sphere. We upload the target trajectory onto the vehicle, which performs estimation
and control onboard using the previously described EKF and the trajectory tracking
controller proposed in Mellinger and Kumar (2011). We simulate GPS measurements
by corrupting motion capture position measurements with white Gaussian noise of
0.1m standard deviation, adding the groundtruth ppi in the local coordinate frame, and
throttling measurements to 10Hz. In each trial, we fly the three trajectories and log the
filter’s ppi estimate over time.

The results in Tab. 3 show that, with the optimized trajectory, the EKF estimates
the GPS sensor position with 2x lower RMSE than other trajectories. In addition, our
method yields smaller standard deviation of estimate errors and significantly smaller
mean trace of the ppi estimate covariance. This indicates that our trajectory produces
more consistent results and is more certain about the converged values. Some of the real
robot experiments are shown in the video: https://youtu.be/v8UkOtRJEsw.

10 Conclusion

In this work, we introduced a framework to optimize robot trajectories for estimation
of self-calibration states. Our method is applicable to any locally observable nonlinear
system with smooth dynamics and a differentiable sensor model. Our observability-
aware E2LOG cost function employs a short-horizon Taylor expansion to capture the
interactions between the self-calibration states, system dynamics, and measurements,
allowing us to optimize for states that do not directly appear in the measurement model.
We also described a statistical scaling technique to jointly optimize for multiple self-
calibration states with varying units, ranges, and measurement functions. We applied
the E2LOG objective to several trajectory optimization formulations: a piecewise
polynomial null-space basis for optimized self-calibration loop trajectories, a Bézier
spline basis for calibration-aware navigation through an obstacle-free corridor, and a
sampling-based online replanning method that can modify an existing trajectory plan
in less than 1/2 second to improve observability while respecting corridor and dynamic
constraints.
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We demonstrated our methods in extensive simulation experiments with both
GPS-IMU and visual-inertial odometry sensor suites. Our experiments showed a
strong correlation between the E2LOG cost function value and the estimation
accuracy of self-calibration states in an EKF, and validated that our statistical scaling
technique produces trajectories that balance conversion of all the self-calibration states
simultaneously. We showed that a single joint-optimized closed loop trajectory from
our framework outperforms a trajectory minimizing the EKF covariance trace and
common heuristic self-calibration trajectories, while taking ∼50x less time to optimize
than the EKF-based cost function.

For the corridor navigation problem, we showed example results from our method
and analyzed the overall performance of the trajectories by considering the error
of the vehicle position estimate. Our optimized trajectory finished with 2× better
RMS position error than a minimum-snap trajectory, showing that a calibration-aware
trajectory can help a mobile robot maintain an accurate overall state estimate while
moving collision-free through the environment. We also demonstrated that our online
replanning framework can modify a short segment of a corridor-constrained trajectory
for improved observability. We simulated a scenario where a self-calibration parameter
is perturbed and a hypothetical self-monitoring state estimation system detects the
increased uncertainty. The replanned trajectory caused the estimator to converge on
the new correct value whereas the energy-minimizing trajectory retained the incorrect
estimate.

Finally, we evaluated our method on a real quadrotor, using a motion capture
system to simulate noisy GPS data with known ground truth self-calibration values.
The experiments on the real quadrotor confirmed the simulation results, yielding 2×
improvement over the heuristic trajectories in terms of the GPS-IMU position state
estimation.
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A Hardness of Graph Approximation
In this appendix, we construct a graph discretization of the observability-aware
trajectory optimization problem and show that it is NP-complete. We call this
problem OBSERVABILITY-PATH. While this result does not directly apply to the
continuous form of the problem, it illustrates the fundamental difference between
observability-maximizing trajectory optimization and time- or energy-minimizing
trajectory optimization.

Let G = (V,E) be a connected, directed graph where each vertex v ∈ V is
associated with a valid location in the system’s state space. For each v1, v2 ∈ V , the
directed edge e = (v1, v2) exists in E if there is a collision-free trajectory segment
from v1 to v2 that respects the system’s dynamic limits (e.g. maximum actuator force).
Note that the state space may include velocities, etc., as needed to ensure that a graph
path corresponds to a physically plausible trajectory.

Each edge e ∈ E is associated with a symmetric positive semidefinite n× n matrix
Ke corresponding to the E2LOG integrated over the trajectory segment. A path
p = e1, e2, . . . , ek is mapped to the objective:

σmin(Wo(p)), where Wo(p) = (Ke1 +Ke2 + · · ·+Kek), (43)

where σmin denotes the smallest singular value. We wish to find the path between two
vertices s, t ∈ V that maximizes this objective. If the covering of the free space by V is
sufficiently dense, then this problem approximates the continuous problem reasonably.
In the decision version of OBSERVABILITY-PATH, we query if an s− t path p with
σmin(Wo(p)) ≥ α, α ∈ R>0 exists.

Theorem 1. OBSERVABILITY-PATH is NP-complete.

Proof. Given a path p of ` edges, we can sum the matrices Kei in O(`n2) time,
compute the singular values of Wo(p) in O(n3) time (Trefethen and Bau 1997), and
find the minimum in O(n) time. Thus, OBSERVABILITY-PATH is in NP.

We give a reduction from the well-known NP-complete problem SET-COVER to
OBSERVABILITY-PATH. In SET-COVER, we are given a set U indexed by i ∈ 1 . . . n,
a collection of subsets S ⊆ 2U indexed by j ∈ 1 . . .m, and a positive integer L ∈ N+.
We wish to decide if there exists a cover C ⊆ S such that |C| ≤ L and

⋃
C = U .

To each set sj ∈ S we associate the diagonal n× nmatrixKj , with diagonal entries
defined by:

Kj [i, i] =

{
1 : ui ∈ sj
0 : otherwise

(44)

for all ui ∈ U . Note that the smallest singular value σmin(Kj) = 0 unless sj = U . We
construct a directed graph following the illustration in Fig. 13. We construct L “layers”
where layer ` contains a directed edge ej,` for each sj ∈ S. The edge ej,` connects
the vertices vj,`, vj,`′ and is associated with matrix Kj . We connect layer ` to layer
`+ 1 with a complete bipartite subgraph such that vj,`′ is connected to vγ,`+1 for all
j, γ ∈ 1 . . .m. All of the edges in this bipartite subgraph are associated with a zero
matrix. Finally, we construct the source s connected to all vj,1 with zero-matrix edges,
and the sink t connected to all vj,L′ with zero-matrix edges.
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s

layer 1

e1,1[
1

0
0

]
e2,1[
0

1
0

]
e3,1[
0

1
1

]

layer 2

e1,2[
1

0
0

]
e2,2[
0

1
0

]
e3,2[
0

1
1

]

t

[
1

1
0

]

[
1

1
1

]

→ σmin = 0

→ σmin = 1

Figure 13. Example of graph used to reduce SET-COVER to OBSERVABILITY-PATH. In this
small problem, U = {1, 2, 3}, L = 2, and S = {{1}, {2}, {2, 3}}. Edges without a matrix
drawn correspond to zero matrices. The dotted path pd corresponds to the choice of sets
{1} and {2}. It is not a covering of U , and Wo(pd) = 0. The solid path ps corresponds to
the choice of sets {1} and {2, 3}. It is a covering of U , and Wo(ps) = 1.

This graph has O(Lm) vertices and O(Lm2) edges, and O(Lmn2) time needed to
construct the Kj edge matrices.

Any s− t path pmust contain exactlyL of the edges ej,` and corresponds to a choice
C of between 1 and L elements of S, with some elements possibly chosen more than
once. By the construction of theKj , the matrix sumWo(p) will contain nonzero entries
only for those diagonal elements Wo[i, i] where ui ∈ s for some s ∈ C. Since the
singular values of a diagonal matrix are exactly the diagonal entries, σmin(Wo(p)) ≥ 0
if and only if C is a cover of U . Furthermore, by construction of the Kj matrices, all
nonzero singular values of Wo(p) must be ≥ 1. Since OBSERVABILITY-PATH seeks to
find an s− t path p with σmin(Wo(p)) ≥ α, OBSERVABILITY-PATH with α = 1 will
find a path corresponding to an L-cover of U , if it exists.
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