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Abstract— We present an end-to-end deep learning approach
for performing metric scale-sensitive regression tasks such
visual odometry with a single camera and no additional sensors.
We propose a novel 3D convolutional architecture, 3DC-VO,
that can leverage temporal relationships over a short moving
window of images to estimate linear and angular velocities. The
network makes local predictions on stacks of images that can
be integrated to form a full trajectory. We apply 3DC-VO to the
KITTI visual odometry benchmark and the task of estimating
a pilot’s control inputs from a first-person video of a quadrotor
flight. Our method exhibits increased accuracy relative to
comparable learning-based algorithms trained on monocular
images. We also show promising results for quadrotor control
input prediction when trained on a new dataset collected with
a UAV simulator.

I. INTRODUCTION

Monocular visual odometry (VO) is a heavily studied
topic in robotics as it enables robust 3D localization with a
ubiquitous, cheap, lightweight sensor: a single camera. The
goal of VO is to observe a sequence of images and estimate
the motion of the camera that generated the sequence.
Traditional geometric approaches to monocular VO suffer
from scale ambiguity: it is not possible to tell whether an
image sequence depicts small objects close to the camera,
or large objects far away [1]. Scale accuracy can only be
achieved with geometric methods in one of two ways: 1)
by fusing information from a sensor that measures physical
units, such as an inertial measurement unit (IMU) or global
positioning system (GPS) receiver, or 2) by exploiting prior
knowledge about objects in a scene, such as the the typical
size of a detected vehicle.

Adding an IMU to the system is a straightforward solution
that has delivered impressive results [2], [3]. However, one
may also be interested in extracting camera trajectory data
from pre-existing data sources, such as online videos, with
no corresponding physical sensor data. In these scenarios,
approach 2) is the only option. In this work, we are motivated
by the eventual goal of performing imitation learning on
acrobatic first-person view (FPV) quadrotor flight videos.
This requires estimating the pilot’s unknown control inputs to
the quadrotor, a problem which can be reduced to estimating
the trajectory of the quadrotor’s onboard camera by the
differential flatness property [4]. Since quadrotors move at
high speed in the full six degrees of freedom (6DoF), FPV
flight videos contain a considerably wider range of camera
motions and positions than are found in typical videos. This
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Fig. 1: The 3DC-VO network architecture can be trained to
regress scale-accurate odometry information from video data.
Shown above is a screen capture from a quadrotor simulator
with superimposed predicted (red) and ground truth (blue)
joystick positions. Joystick positions are equivalent to thrust
(acceleration) and angular velocity of the quadrotor.

motivates our design of a learning-based method that makes
minimal assumptions about the objects or motion in the
training data.

We assume access to a training dataset consisting of image
sequences with corresponding camera trajectories. At test
time, our method outputs an estimated camera trajectory
from a single monocular image sequence. Our assumptions
are most similar to those of [5]. We present a novel convolu-
tional neural network architecture, 3DC-VO, adhering to the
following design principles:
1) Support end-to-end training on monocular datasets with

no assumptions about the environment, sensor properties,
or system dynamics. This allows the work to be applicable
towards a wider variety of robots and datasets.

2) Utilize a 3D convolutional architecture to consume time-
series data without the slower and more complex training
process of a recurrent neural network architecture. To our
knowledge, this work represents the first application of
3D convolutions to monocular VO.

3) Target full 6DoF motion by avoiding any rotation repre-
sentations susceptible to gimbal lock.

Our contributions include a full description of our pro-
posed architecture along with experimental results showing
it outperforming a comparable learning-based approach on
the KITTI visual odometry benchmark on an automobile
platform. We also exhibit accurate quadrotor control input
predictions when trained on a dataset collected from a human
pilot in a realistic flight simulator.
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Fig. 2: High level 3DC-VO architecture. W, H, S, and C stand
for width, height, stack size, and channels, respectively. D
represents the number of dimensions of the output. For the
KITTI task, each subnetwork outputs a single scalar, with the
rotation network outputting the yaw offset between frame t
and t + S − 1, and the translation network outputting the
forward offset. For the quadrotor control estimation task, the
rotation output is a three-dimensional angular velocity vector.

II. RELATED WORK

In this section we outline related work on VO, focusing
only on methods that attempt to overcome the scale ambigu-
ity problem. Existing monocular methods mostly fall into one
of two categories; either inferring camera transformation by
tracking geometric features explicitly, or by learning models
to regress pose from pixel data. We describe related work
from both categories. We note that VO is a vast field and we
can only fit a small fraction of relevant work due to space
limits.

A. Geometric methods

Sparse geometric methods operate by extracting features
from images, matching them from frame to frame, and
estimating the camera’s relative pose offset based on their
movement between frames. In this setting, metric scale is
unobservable [1], [6]. Several solutions to this issue involve
using information from extra sensors, such as IMUs or GPS
receivers [2], [7], [3]. When adding hardware is not an
option, methods must exploit a priori knowledge of metric
properties of objects in the scene to infer scale. Perhaps
due to the popularity of the KITTI benchmark, many such
methods are car-centric: in [8], [9], the authors estimate
scale from known sizes of detected vehicles, while in [10]
scale is derived from known lane width, traffic sign sizes,
and ceiling-to-floor height. Other methods use ground plane
estimation along with an assumed distance from the camera
to the ground [11], [12], [13]. [14] additionally incorporates
car dynamics into their motion estimation. In contrast, our

method targets general-purpose application and makes no
assumptions specific to ground vehicles.

B. Learning-based methods

Learning-based approaches have the potential to estimate
accurate metric scale by (implicitly or explicitly) learning
information about the sizes of objects in the training data.
Before the rise in popularity of deep learning in computer
vision, work such as [15], [16], [17] explored methods such
as Gaussian processes and support vector machines to com-
pute frame to frame ego-motion. More recently, success has
been found in using convolutional neural networks (CNNs)
to estimate VO.

In [18], five-frame stereo subsequences are fed into a CNN
with an input layer pretrained on a representation of depth
and motion, which classifies local offset using discretized
rotational and translational components. While this method
uses a stack of sequential images larger than 2, it treats the
images as channels in a standard 2D convolutional context,
not explicitly taking advantage of temporal information. It
also frames VO as a classification problem, introducing error
due to discretization. Other works [19], [20] have exhibited
excellent performance on the KITTI odometry benchmark
[21] by learning to estimate a depth map from a single
camera image, and incorporating the estimated depth map
into a SLAM algorithm originally designed for sensors such
as stereo cameras or LIDAR. These methods require an
additional data source to train the depth estimator.

Several other approaches [22], [23] explore training CNNs
on precomputed optical flow images to output local pose
offsets, while [5], [24] feed learned optical flow represen-
tations into a recurrent Long Short Term Memory (LSTM)
neural network [25] to predict the global offset. However,
recent work has shown that models convolving over the time
dimension can equal or exceed recurrent neural networks at
learning tasks involving sequential input, while generally re-
quiring less memory and training time [26]. Perhaps because
the aerial robotics application has not been widely consid-
ered, some existing methods such as [5] output an orientation
estimate as Euler angles in the inertial frame, creating the
potential of gimbal lock when used with 6-DoF devices. In
comparison, our system outputs short-horizon angular offset
in the local coordinate system of the camera and integrates
these estimates into a 3D rotation parameterization, free of
gimbal lock issues.

For the task of regressing UAV control inputs, [27] trains a
CNN to predict joystick inputs from human pilots in a drone
racing simulation, with an observation of only one image.
Their end-goal is slightly different than ours, as they aim
to predict the pilot’s next action instead of estimating the
actions that produced the given image.

III. PRELIMINARIES

In this section, we formalize the metric-scale VO problem
and our formulation thereof as a learning task suitable
for a non-recurrent neural network. We use the following
notation: [n] denotes the set of integers 1, . . . , n. Un denotes



the set of n−dimensional unit vectors under the Euclidean
norm: Un = {x ∈ Rn : ‖x‖2 = 1}. Tr(·) denotes the
matrix trace operator. SO(3) denotes the group of three-
dimensional rotations in Euclidean space under the operation
of composition.

Consider the trajectory of a camera moving freely in
three-dimensional space. At each time step t ∈ [T ], the
camera’s state can be described by a position xt ∈ R3 and
an orientation Rt ∈ SO(3). We fix x0 = 0 and R0 = I3×3;
subsequent states are relative to this origin. At each time
step t, the camera captures an image It ∈ RH×W×C , where
(H,W ) denotes the height and width of the input image
in pixels and C denotes the number of color channels in
the input (one for a grayscale image, three for an RGB
image). The VO problem is the following: given the image
sequence I1, . . . , IT , estimate the values of (xt, Rt) for all
t ∈ [T ]. We denote the estimated quantities as (x̂t, R̂t).
The visual odometry problem is distinguished from the
simultaneous localization and mapping (SLAM) problem by
the condition that the VO algorithm should behave like a
Markovian process: the estimate (x̂t, R̂t) should depend only
on the observations I1, . . . , It, and the VO algorithm should
maintain an internal state with bounded size independent of
T . These imply that the VO algorithm should not attempt
the loop closure process that is characteristic of SLAM
algorithms. Furthermore, the VO algorithm is not tasked to
build a map of the environment.

As discussed in Section I, the translational portion (es-
timating xt) of the VO problem is ill-posed because any
estimate γx̂1, . . . , γx̂T scaled by γ ∈ R, γ 6= 0 is an
equally valid solution from a geometric perspective. (We are
unconcerned with the possibility of a constant translation
offset.) However, if one assumes that the environment con-
tains recognizable objects of fixed size, only one γ is correct,
because it will yield a trajectory that is consistent with the
known sizes of objects in the scene. Our goal in this paper
is to capture such prior knowledge about the sizes of objects
by training an end-to-end learning-based method on a dataset
containing realistic objects and a correct ground-truth camera
trajectory. We emphasize that prior knowledge about object
sizes is learned implicitly via the task of metric-scale VO;
our method does not contain an explicit object recognition
step.

Quadrotor background

We briefly recall some background information on quadro-
tors needed to describe the application of our method to the
quadrotor control estimation task. A quadrotor is a flying
vehicle actuated by four coplanar propellers positioned at
the corners of a square. If one approximates the individual
motor dynamics as instantaneous, one can treat the total
thrust and body angular accelerations as direct control inputs,
since they are invertible linear functions of the four motor
thrusts [28]. However, human pilots do not control the
angular acceleration directly because the rate at which the
controls must be changed is beyond human ability. Instead,
the pilot inputs angular velocity and the quadrotor’s onboard

flight controller executes a fast (500+ Hz) feedback control
loop that drives the motors to achieve the desired angular
velocity. It is also common for non-acrobatic pilots to use
a higher-level control input such as body attitude or even
translational velocity, however it is not possible to express
a movement like a flip with such an input, since the control
sticks are bounded. In this paper, we wish to handle the full
range of quadrotor maneuvers, so we choose to estimate the
angular velocity and total thrust.

IV. METHODOLOGY

This section presents our approach to the VO problem
described in Section III. We first outline the structure of
our approach. We then describe our deep convolutional
architecture and training regime in detail. We separately
adapt our method to two scenarios:

• KITTI visual odometry driving dataset, where the move-
ment is essentially two-dimensional. KITTI is a widely
used benchmark dataset that allows comparing our
method to other published methods.

• Estimating control inputs from a first-person quadrotor
flight video, which contains a much wider range of
movements. As discussed in Section III, estimating
quadrotor flight controls is essentially equivalent to VO.

A. Overall structure

Our approach is built on the idea of estimating short-
horizon VO with a learned function, and integrating these
estimates together into an estimate of the complete camera
trajectory. We perform VO using a moving window of S > 1
frames, with a one-timestep increment such that consecutive
windows are overlapping. For short-horizon VO, we learn a
function

fθ : RS×H×W×C 7→ R3 × SO(3), (1)

parameterized by a real-valued vector θ. The function
fθ maps a fixed-length “stack” of S ∈ N images
It, It+1, . . . , It+S−1 to an estimated translation and rotation
between the first and last image. We denote the estimated
rotation between time s to time t, where s < t, by R̂ts ∈
SO(3). The estimated local translation δ̂ts ∈ R3 estimates
the translation from xs to xt in the local coordinate frame
of Rs. For a horizon S = 1, integrating these estimates can
be trivial:

R̂t =

t−1∏
i=1

R̂i+1
i , x̂t =

t−1∑
i=1

R̂iδ
i+1
i , (2)

where the matrix product is computed using left-
multiplication of each term with the base case of an identity
matrix. However, we wish to use a longer horizon S > 1
to give fθ more information. When S > 1, the integration
task is slightly less straightforward because the transition
between images It, It+1 appears in each of the estimates
from R̂t+1

t−S+2 through R̂t+S−1
t . Here we state a procedure

to account for this.
A rotation matrix in SO(3) can also be represented in

axis-angle form. Within the axis-angle parameterization it is



natural to express a fraction or multiple of a rotation, whereas
these quantities are not so easily computed in the matrix
parameterization. Let (v, θ) ∈ U3 × R denote the rotation
about the unit vector v by the angle θ, following the right-
hand rule convention. For an arbitrary scalar α ∈ R, the
rotation matrix corresponding to the rotation (v, αθ) is given
by the formula of Rodrigues:

R = I + sin(αθ)V× + (1− cos(αθ))V 2
×, (3)

where V× is the cross-product matrix of v,

V× =

 0 −vz vy
vz 0 −vx
−vy vx 0

 . (4)

A rotation matrix R is converted into axis-angle form as
follows:

θ = cos−1

(
Tr(R)− 1

2

)
, v =

1

2 sin θ

(
R−RT

)
. (5)

We let R1/k denote the rotation matrix, produced using the
axis-angle formulae of (3)–(5), such that (R1/k)k = R.
We are now able to state our method for integrating the
overlapping R̂t+S−1

t , δ̂t+S−1
t estimates:

R̂t ≈
t−S+1∏
i=1

(R̂i+S−1
i )1/S , x̂t ≈

1

S

t−1∑
i=1

R̂iδ
i+S−1
i . (6)

Some remarks:
• This formulation does not properly account for the edge

cases at t = 0 and t = T . We consider these relatively
unimportant because we use small stack sizes (S ≈ 5)
such that the lost accuracy is insignificant relative to the
overall trajectory.

• This formulation relies on a small angle assumption. For
very small θ, it can be derived from (3) that rotations
are approximately commutative. With this assumption,
spreading the contribution of Ri+1

i to all the rotation
intervals that contain it is reasonable, even though the
rotations from other timesteps are multiplied together
“out of order”. This implies a minimum sampling rate
for the camera.

• We validated (6) by passing the ground truth camera tra-
jectories from the KITTI dataset through this procedure
and observing a minimal loss of accuracy.

It can be shown that, in the special case of two-
dimensional rotations in a coordinate plane, (3) reduces to
simple accumulation of an angle. For the KITTI dataset, the
motion is approximately planar since there are no big hills in
the driving location, and the car is never driven hard enough
to induce significant body roll. For simplicity, we therefore
estimate only the yaw angle rotation ψ̂ between the first and
last frames, and accumulate an absolute yaw estimate Ψ̂ as
Ψ̂t+1 = Ψ̂t + 1

Sψ(t−S+1):t. For our quadrotor experiments,
we regress on angular velocity directly rather than relative
rotations between frames, since angular velocity corresponds
directly with the control input used for acrobatic flight. An

Layeri

3D Kernel
Layeri+1

Fig. 3: A 3D convolution. In a 2D convolution, multiple 2D
convolutional filters are stacked into a resulting 3D volume,
whereas in a 3D convolution, 3D filters are stacked into a
4D volume, as show in Figure 4. The above graphic only
represents one 3D filter.

angular velocity estimate ω̂ ∈ R3 can be converted into an
axis-angle rotation using the formula

θ = ‖ω‖, v =
ω

‖ω‖
, (7)

and proceeding with the integration as above.

B. General Network Architecture

In all experiments, we parameterize fθ (1) as a (moder-
ately) deep 3D-convolutional neural network. We begin by
describing the generic properties of the network architecture
that are shared across all experiments. In Sections IV-C
and IV-D, we provide details of the architecture adjustments
made for the KITTI and quadrotor control estimation exper-
iments.

The general network architecture is composed of four
hidden 3D convolutional layers, each followed by a batch
normalization layer. The convolutional layers are followed
by two fully connected (FC) layers. Each hidden layer
uses the Rectified Linear Unit (ReLU) activation function,
with the exception of the last hidden FC layer, which
uses LeakyReLU [29], a modification of ReLU that outputs
weighted negative values. The output layer uses a linear
activation function. All layers employ L2 regularization
(“weight decay”) at a rate of 0.005 to help avoid overfitting.
Our network uses a relatively modest number of layers and
parameters compared with some recent deep architectures
[30] – this is intended to avoid overfitting, since our training
datasets are not particularly large.

A 3D convolution follows the same principle as a 2D
convolution, but the kernel and stride are in three dimen-
sions [31]. As shown in Figure 3, a 3D kernel slides over
a volume, performing a convolution with pixels that are
spatially nearby in the horizontal and vertical dimensions,
and temporally nearby in the time dimension. Since each
input pixel is vector-valued with a dimensionality depending
on the number of convolution filters in the previous layer
(or on C in the base case), the kernel of a 3D convolutional
filter is actually a four-dimensional object, as illustrated in
Figure 4.

Table I and Table II detail the hyperparameters of the
subnetworks. The architecture is adapted differently for the



TABLE I: Neural network hyperparameters used to estimate
rotation.

Layer Filters Kernel Size Stride Activation

3D Conv. 8 (3, 3, 5) (3, 3, 1) ReLU
Batch Norm.
3D Conv. 16 (3, 3, 5) (3, 3, 1) ReLU
Batch Norm.
3D Conv. 32 (3, 3, 5) (3, 3, 1) ReLU
Batch Norm.
3D Conv. 4 (1, 1, 5) (1, 1, 5) ReLU
Batch Norm.
Flatten
Dense (64) LeakyReLU
Dense Linear

TABLE II: Neural network hyperparameters used to estimate
translation.

Layer Filters Kernel Size Stride Activation

3D Conv. 8 (3, 3, 5) (3, 3, 1) ReLU
Batch Norm.
Dropout (0.1)
3D Conv. 8 (3, 3, 5) (3, 3, 1) ReLU
Batch Norm.
Dropout (0.1)
3D Conv. 16 (1, 1, 1) (1, 1, 1) ReLU
Batch Norm.
3D Conv. 1 (1, 1, 5) (1, 1, 5) ReLU
Batch Norm.
Flatten
Dense (8) LeakyReLU
Dropout (0.25)
Dense Linear

KITTI odometry and quadrotor control tasks, with varying
input and output sizes resulting in different convolutional
filter sizes for each.

The network is trained using the Adam optimizer [32] with
a learning rate of 0.001.

C. KITTI VO Network

For the KITTI odometry task, separate rotation and trans-
lation CNN’s are trained, with each network being broken
up into three identical subnetworks, one for each color
channel, shown in Figure 2. The input to the network
is three image stacks (for each channel) of dimensions:
(W,H,S,C) = (160, 90, 5, 1). Each image is resized down

[W, H, S, C]
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Flatten 
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Dense 

(D) 1
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Fig. 4: Generic subnetwork structure. As with Figure 2, W, H,
S, C, and F stand for width, height, stack size, channels, and
number of filters, respectively, and D represents the network
output dimension.

from (1241, 376) to (300, 90) and cropped at the sides to
(160, 90). We also experimented with uncropped images,
but the resulting increase in network parameters led to
overfitting. Other alternative approaches explored included
using a single subnetwork encompassing all color channels
with input size (160, 90, 5, 3), as well as using a single
network to estimate both rotation and translation, but both
of these approaches performed worse upon evaluation. The
outputs of the color channel subnetworks are averaged to
arrive at the final estimation. We are not aware of any
theoretical reason why using separate networks for each
color channel performs better than a single network, but we
continued with this architecture because it performed best in
our experiments.

As car movement mostly exhibits only yaw and forward
offsets (as discussed in Section IV-A) in the span of 5 frames
(lasting roughly 0.5 seconds with KITTI images at 10Hz),
the rotation and translation networks only output a single
scalar each, yaw and forward offsets, respectively. The roll,
pitch, lateral and elevation components are set to zero when
aggregating the local offsets into the global trajectory.

In evaluation, we observed that estimation accuracy of
very tight turns (ψ large) was not as good compared to
straight sections. To account for this, we employ a weighted
mean squared error (MSE) training loss for the rotation net-
work, which penalizes angular offset errors above a certain
threshold more than errors below it:

L =
1

N

N∑
i=1

w(ψi) · (ψ̂i − ψi)2, (8)

where N is the minibatch size used. The function w :
R 7→ R>0 is a nondecreasing weighting function. In our
experiments, we used a simple piecewise constant weight

w(ψi) =

{
2 ψi > 0.1

1 otherwise.
(9)

D. Quadrotor Control Network
For the quadrotor control prediction task, two networks

are created for predicting thrust and angular velocity, both
using the same hyperparameters as the KITTI rotation net-
work detailed in Section IV-C.The input images are of size
(256, 144), and the thrust network has 1 output and the
angular network outputs rudder, elevator, and aileron. The
joystick measurements from the first frame in the stack are
used as the ground truth value.

Unweighted MSE was used as the loss function for op-
timizing this network, as our end goal was to predict local
control inputs rather than aggregate local offsets into a global
pose, so long term drift was not a concern.

V. EXPERIMENTAL RESULTS
A. KITTI odometry task

1) Training: The KITTI dataset is provided as a set of 21
sequences of frames, with the first ten sequences containing
ground truth poses and the rest without. We used sequences
00, 02, 08, and 09 for training, 03-07 and 10 for validation,
and 11-21 as a test set.



(a) Sequence 12 (b) Sequence 13 (c) Sequence 14

Fig. 5: Plots 12-14 of KITTI ground truth (in black), 3DC-VO predictions (in blue), and DeepVO predictions (in red).
Although our method observes only a monocular image stream, making the odometry task susceptible to scale ambiguity,
the scale of our estimated trajectories approximately match the ground truth.

(a) Trans. against path length (b) Rot. against path length

(c) Trans. against speed (d) Rot. against speed

Fig. 6: Translation and rotation errors for 3DC-VO and
DeepVO against path length and speed for the KITTI eval-
uation sequences 10-21.

2) Testing: After evaluating our trained model on test
sequences 11-21 and using the pose aggregation proce-
dure detailed in Section IV-A to generate global homo-
geneous transformation matrices, we submit our results to
the KITTI benchmark server to be judged against other
submissions. The closest point of comparison for our method
is DeepVO [5], a learning-based method that also trains
exclusively on monocular data, but uses a recurrent neural
network architecture to estimate global pose (x̂t, R̂t) directly,
instead of 3D convolutions to estimate local translation and
rotation over a fixed window. Compared to DeepVO, our
method achieves improved results of 21.0% translational
error versus 24.55%, and 0.0394◦/m rotational error versus
0.0489◦/m. Figure 6 plots the average translational and rota-
tional errors for each path length of size (100, 200, . . . , 800)
meters, as well as errors against vehicle speed in 10 km/h
increments (the 21.0% and 0.0394◦/m values on the KITTI

leaderboard are the mean of these values, respectively). Fig-
ure 5 shows trajectories for sequences 12-14, as predicted by
DeepVO and 3DC-VO, along with ground truth. Sequence 12
shows DeepVO predicting a slightly more accurate trajectory,
with 3DC-VO demonstrating a clear advantage on sequences
13 and 14. We also note that our method is estimating
metric scale accurately in these trajectories given only a
monocular image stream. It is interesting to note that both
methods’ predictions are of similar scales, even when they
are noticeably different from the ground truth, as seen in 5
a) and c). This suggests that even though the internal CNN
architectures are significantly different in design, they could
be learning similar features internally.

We emphasize that neither method is competitive on the
KITTI leaderboard with methods that use additional sensor
data such as IMU or LIDAR. In comparison, the key strength
of our method (and DeepVO) is our ability to estimate metric
scale using only monocular camera data. Our training and
evaluation code for the KITTI odometry task is available
at https://www.github.com/alexanderkoumis/
3dc_vo.

B. Quadrotor control estimation task

1) Dataset generation: To the best of our knowledge,
there is no public dataset containing image observations from
a quadrotor alongside per-frame control inputs. We created
such a dataset using Microsoft’s AirSim [33], a quadrotor
simulator based on the Unreal game engine. AirSim includes
environment models with realistic graphics, such as a subur-
ban neighborhood with trees, houses, power lines, and cars.
We captured image sequences, along with ground truth pose
and joystick positions, in 9 different environments, including
a neighborhood, large city, forest, and plains scene. The
pilot’s control inputs were captured from a radio control
transmitter of the same type used for real quadrotor flight,
by capturing the controller’s analog outputs through the
PC’s analog audio input. The resolution of the images from
AirSim was (254, 144). We used AirSim’s software-in-the-
loop control mode with the popular open-source flight control
firmware PX4 [34], since PX4 implements the same type of

https://www.github.com/alexanderkoumis/3dc_vo
https://www.github.com/alexanderkoumis/3dc_vo


Fig. 7: Predicted (red) and ground truth (blue) joystick
positions from a flight simulator sequence with a human
pilot. Joystick axes have an affine relationship with thrust
and angular velocity inputs. Offset from zero-mean is due to
joystick calibration offset.

attitude rate controller commonly used onboard quadrotors
for acrobatic flight control.

2) Training: One sequence was recorded per environment,
9 in total. All but one of these were used as the training
set, with the city environment being left out for validation.
We created two networks based on the rotation network
described in Table I, one for predicting throttle and one for
predicting the rotational control inputs. The networks predict
the joystick positions at the beginning of an image stack,
which is similar to the KITTI task of predicting velocity
by computing the offset between frame t and t + 4, as
joystick commands directly correspond to the desired thrust
and angular velocity of the vehicle.

The throttle network was trained using images separated
by four time steps, i.e. It, It+5, It+10, It+15, It+20, while the
rotation network trained on consecutive images. The reason
for this distinction is that the AirSim vehicle dynamics are
that of a relatively heavy quadrotor, responding quickly to
rotational input while reacting much slower to throttle input
(resulting in little no change in image features in consecutive
frames).

3) Testing: The effectiveness of the model was evaluated
by examining plots of predicted versus ground truth joystick
positions on the dataset sequences, as well as displaying
real-time joystick predictions over the simulator as a pilot
controlled a quadrotor. Figure 7 shows the joystick estimates
compared to the ground truth values at each frame for
a particular sequence in the dataset, with a 0.0895 mean
absolute error and 0.3245 standard deviation. Figure 1 is a
screen capture from a video (included with this work’s sup-
plementary material) showing a pilot controlling a quadrotor
with overlaid real-time joystick predictions. This is a new
dataset with no baselines for comparison, but the plots and
real-time predictions show good performance making metric

scale-accurate predictions on the joystick input.

VI. CONCLUSIONS

In this work we have shown that a 3D convolutional neural
network is capable of performing end-to-end monocular VO
with accurate scale. We avoid the recurrent architectures
commonly used for sequence processing, allowing faster
training and an improvement in accuracy on the KITTI
driving dataset compared to a state-of-the-art RNN-based
method. We also demonstrated an application of our ar-
chitecture to quadrotor control estimation, a domain with
significantly different camera motions and scene appearance.

While end-to-end learning-based architectures have room
for improvement in terms of rotational accuracy compared to
traditional geometric methods, they provide a way to estimate
metric scale without any extra sensors or domain-specific
assumptions. End-to-end learning can implicitly capture prior
knowledge about the size and appearance of real-world
objects, simply as a side effect of learning to estimate the
rotation and translation between frames in physical units.
In future work, we plan to leverage this property to build a
large dataset of estimated trajectories and pilot controls from
publicly available acrobatic flight videos, and use this dataset
to explore imitation learning approaches for creating agents
that fly like human acrobatic pilots. We also believe that
improved accuracy is possible, potentially by experimenting
with the following: more geometrically accurate integration
of moving window velocities into pose, alternative loss func-
tion weighting for sharp turns, larger convolutional network
architectures, and data augmentation to allow training large
networks without overfitting.
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